Question
Mathematics Question on Differentiability
If f(x)=(1+x)n, then the value of f(0)+f′(0)+2!f′′(0)+.....+n!f(n)(0) is equal to
A
2n−1
B
2n
C
n
D
2n
Answer
2n
Explanation
Solution
Given, f(x)=(1+x)n
On differentiating w. r. t. x, we get
f′(x)=n(1+x)n−1
Again, differentiating, we get
f′′(x)=n(n−1)(1+x)n−2
∴ fn(x)=n(n−1).....3.2.1=n!
∴ f(0)+f′(0)+2!f′′(0)+....n!fn(0)
=1+n+2!n(n−1)+....+n!n!
=nC0+nC1+nC2+...+nCn
=2n