Question
Question: If \[f(\theta ) = \left| {\begin{array}{*{20}{c}} 1&{\cos \theta }&1 \\\ { - \sin \theta }&...
If f(\theta ) = \left| {\begin{array}{*{20}{c}}
1&{\cos \theta }&1 \\\
{ - \sin \theta }&1&{ - \cos \theta } \\\
{ - 1}&{\sin \theta }&1
\end{array}} \right| and A and B are respectively the maximum and minimum values off(θ), then (A,B) is equal to
A. (3,−1)
B. (4,2−2)
C. (2+2,2−2)
D. (2+2,−1)
Solution
We first find the determinant of the given matrix and then using the trigonometric identities find the simplest form of the determinant. In the end we find the maximum and minimum values by comparing them with suitable identity.
Formula used:
a) We use the formula to solve a determinant
\Rightarrow f(\theta ) = 1[1 + \sin \theta \cos \theta ] - \cos \theta [ - \sin \theta - \cos \theta ] + 1[ - {\sin ^2}\theta + 1] \\
\Rightarrow f(\theta ) = 1 + \sin \theta \cos \theta + \cos \theta \sin \theta + ({\cos ^2}\theta - {\sin ^2}\theta ) + 1 \\