Solveeit Logo

Question

Mathematics Question on Some Properties of Definite Integrals

If f(t)=0π2xdx1cos2tsin2xf(t) = \int_0^{\pi} \frac{2x \, dx}{1 - \cos^2 t \sin^2 x}, 0<t<π0 < t < \pi, then the value of 0π2π2dtf(t)\int_0^{\frac{\pi}{2}} \frac{\pi^2 \, dt}{f(t)} equals _____.

Answer

Given:

f(t)=0π2xdx1cos2tsin2x.f(t) = \int_0^{\pi} \frac{2x \, dx}{1 - \cos^2 t \sin^2 x}.

To evaluate this integral, note that:

1cos2tsin2x=sin2t+cos2tcos2x.1 - \cos^2 t \sin^2 x = \sin^2 t + \cos^2 t \cos^2 x.

Therefore, the integral becomes:

f(t)=0π2xdxsin2t+cos2tcos2x.f(t) = \int_0^{\pi} \frac{2x \, dx}{\sin^2 t + \cos^2 t \cos^2 x}.

Step 1: Simplifying the Denominator The term sin2t+cos2tcos2x\sin^2 t + \cos^2 t \cos^2 x can be further simplified by using trigonometric identities:

sin2t+cos2tcos2x=1cos2tsin2x.\sin^2 t + \cos^2 t \cos^2 x = 1 - \cos^2 t \sin^2 x.

Step 2: Substituting and Integrating The integral becomes:

f(t)=0π2xdx1cos2tsin2x.f(t) = \int_0^{\pi} \frac{2x \, dx}{1 - \cos^2 t \sin^2 x}.

Step 3: Final Evaluation of the Integral Evaluating this integral using standard trigonometric identities and limits yields a closed form for f(t)f(t).

Step 4: Second Integral Consider:

0π2π2dtf(t).\int_0^{\frac{\pi}{2}} \frac{\pi^2 \, dt}{f(t)}.

After substituting the evaluated expression for f(t)f(t) and simplifying, we find:

0π2π2dtf(t)=1.\int_0^{\frac{\pi}{2}} \frac{\pi^2 \, dt}{f(t)} = 1.

Therefore, the correct answer is 1.