Solveeit Logo

Question

Question: If \(f:R \to R{\text{ and }}g:R \to R{\text{ defined by }}f(x) = \left| x \right|{\text{ and }}g(x) ...

If f:RR and g:RR defined by f(x)=x and g(x)=[x3] for xR.f:R \to R{\text{ and }}g:R \to R{\text{ defined by }}f(x) = \left| x \right|{\text{ and }}g(x) = \left[ {x - 3} \right]{\text{ for }}x \in R.
[.] denotes greatest integer function, then g(f(x)):85<x<85=\\{ g(f(x)):\dfrac{{ - 8}}{5} < x < \dfrac{8}{5}\\} =
A. 0,1\\{ 0,1\\}
B. 1,2\\{ - 1, - 2\\}
C. 3,2\\{ - 3, - 2\\}
D. 2,3\\{ 2,3\\}

Explanation

Solution

As f(x)=xf(x) = \left| x \right| and g(x)=[x3]g(x) = \left[ {x - 3} \right]
So we can take the two cases
Case (1) for x>0x > 0
\Rightarrow f(x)=x and g(x)=[x3]f(x) = x{\text{ and }}g(x) = \left[ {x - 3} \right]
\Rightarrow g(f(x))=g(x)=[x3]g(f(x)) = g(x) = \left[ {x - 3} \right]
And for the case (2) for x<0x < 0
\Rightarrow f(x)=x and g(x)=[x3]f(x) = - x{\text{ and }}g(x) = \left[ {x - 3} \right]
\Rightarrow g(f(x))=g(x)=[x3]g(f(x)) = g( - x) = \left[ { - x - 3} \right]
Where [.] denotes the greatest integer function.

Complete step-by-step answer:
Here we are given that f:RR and g:RR f:R \to R{\text{ and }}g:R \to R{\text{ }}
This means that range and domain of both the functions can be real number and also we are given that f(x)=xf(x) = \left| x \right| and g(x)=[x3]g(x) = \left[ {x - 3} \right]
Where [.] denotes the greatest integer function.
So as we know that GIF of any number would be the integer just smaller to that of the given number
If the number is the integer then the GIF of that number will be integer itself.
Now we are given
\Rightarrow f(x)=xf(x) = \left| x \right|
So we can take the two cases where f(x)=xf(x) = \left| x \right| is defined.
Case (1) for x>0x > 0
Here xx is positive
\Rightarrow f(x)=x and g(x)=[x3]f(x) = x{\text{ and }}g(x) = \left[ {x - 3} \right]
In g(f(x))g(f(x)) we just need to replace f(x)f(x) by xx
\Rightarrow g(f(x))=g(x)=[x3]g(f(x)) = g(x) = \left[ {x - 3} \right]
And for the case (2) for x<0x < 0
Here xx is negative
\Rightarrow f(x)=x and g(x)=[x3]f(x) = - x{\text{ and }}g(x) = \left[ {x - 3} \right]
\Rightarrow g(f(x))=g(x)=[x3]g(f(x)) = g( - x) = \left[ { - x - 3} \right]
So for x<0x < 0
g(f(x))=g(x)=[x3]g(f(x)) = g( - x) = \left[ { - x - 3} \right]
So we can write that g(f(x))g(f(x)) =[x3] for x<0 =[x3] for x>0  = \left[ { - x - 3} \right]{\text{ for }}x < 0 \\\ = \left[ {x - 3} \right]{\text{ for }}x > 0 \\\
And we need to find between 85<x<85\dfrac{{ - 8}}{5} < x < \dfrac{8}{5}
So for 85<x<85\dfrac{{ - 8}}{5} < x < \dfrac{8}{5} that means 1.6<x<1.6 - 1.6 < x < 1.6
\Rightarrow g(f(x))=[x3]g(f(x)) = \left[ { - x - 3} \right]
So if we will multiply by -1, the equation will change
As we know that 1>2 - 1 > - 2 and if we multiply 1 - 1 on both the sides then 1<21 < 2 sign of equality will change, so here we got85<x<0 - \dfrac{8}{5} < x < 0 and now if we multiply by1 - 1, we get
\Rightarrow 0<\-x<850 < \- x < \dfrac{8}{5}. Now if we subtract 3 - 3 we will get
\Rightarrow 03<\-x3<8530 - 3 < \- x - 3 < \dfrac{8}{5} - 3
\Rightarrow 3<\-x3<75 - 3 < \- x - 3 < \dfrac{{ - 7}}{5}
And we can write it in this way also
\Rightarrow 3<\-x3<\-2 - 3 < \- x - 3 < \- 2 \cup 2<\-x3<75 - 2 < \- x - 3 < \dfrac{{ - 7}}{5}
Which means that x3[3,2)[2,75) - x - 3 \in [ - 3, - 2) \cup [ - 2, - \dfrac{7}{5})
So if we take GIF of [x3]\left[ { - x - 3} \right] we will get[x3]=3 and 2\left[ { - x - 3} \right] = - 3{\text{ and }} - 2
So for [x3]\left[ { - x - 3} \right]we get3,2\\{ - 3, - 2\\}
For case (1)
x>0x > 0
\Rightarrow g(f(x))=[x3]g(f(x)) = [x - 3]
And we have to find for 0<x<850 < x < \dfrac{8}{5}
So subtracting 33 we get that
\Rightarrow 03<x3<8530 - 3 < x - 3 < \dfrac{8}{5} - 3
\Rightarrow 3<x3<75 - 3 < x - 3 < \dfrac{{ - 7}}{5}
So we got (x3)=(3,75)(x - 3) = \left( { - 3,\dfrac{{ - 7}}{5}} \right)
So upon taking GIF of g(f(x))=[x3]g(f(x)) = [x - 3] we get 3,2\\{ - 3, - 2\\}
So upon combining both the answers we get3,2\\{ - 3, - 2\\}

Hence option C is correct.

Note: If any equality is given a<x<ba < x < b and if we multiply by 1 - 1 then the in inequality will change which means b<\-x<\-a - b < \- x < \- a
For example: As we know that 1>2 - 1 > - 2 and if we multiply 1 - 1 on both the sides then 1<21 < 2 sign of equality gets changed.
Also now if we are given that ff is the inverse of gg then
\Rightarrow g(x)=f1(x)g(x) = {f^{ - 1}}(x) then f(g(x))=xf(g(x)) = x
Upon differentiating, we get
\Rightarrow f(g(x)).g(x)=1f'(g(x)).g'(x) = 1
\Rightarrow f(g(x))=1g(x)f'(g(x)) = \dfrac{1}{{g'(x)}}