Solveeit Logo

Question

Question: If \(f:R \to R\) is a function defined by \(f\left( x \right) = \left[ x \right]\cos \left( {\dfrac{...

If f:RRf:R \to R is a function defined by f(x)=[x]cos(2x12π)f\left( x \right) = \left[ x \right]\cos \left( {\dfrac{{2x - 1}}{2}\pi } \right), where [x] denotes the greatest integer function, then f is:
(a)\left( a \right) Continuous for every real x
(b)\left( b \right) Discontinuous only at x = 0
(c)\left( c \right) Discontinuous only at non-zero integral values of x
(d)\left( d \right) Continuous only at x = 0

Explanation

Solution

In this particular question use the concept that if the left hand limit i.e. LHL is equal to the RHL at a particular point i.e. (limxn)LHL=(limxn+)RHL{\left( {\mathop {\lim }\limits_{x \to {n^ - }} } \right)_{LHL}} = {\left( {\mathop {\lim }\limits_{x \to {n^ + }} } \right)_{RHL}} then the function is continuous at every value of x otherwise not, where n belongs to integer values so use these concepts to reach the solution of the question.

Complete step-by-step answer :
Given function
f(x)=[x]cos(2x12π)f\left( x \right) = \left[ x \right]\cos \left( {\dfrac{{2x - 1}}{2}\pi } \right)
Now the above function is also written as
f(x)=[x]cos(xππ2)\Rightarrow f\left( x \right) = \left[ x \right]\cos \left( {x\pi - \dfrac{\pi }{2}} \right)
Now as we know that cos (a – b) = cos (b – a), as cos (-x) = cos (x) so use this property in the above equation we have,
f(x)=[x]cos(π2πx)\Rightarrow f\left( x \right) = \left[ x \right]\cos \left( {\dfrac{\pi }{2} - \pi x} \right)
Now as we know that cos(π2x)=sinx\cos \left( {\dfrac{\pi }{2} - x} \right) = \sin x so use this property in the above equation we have,
f(x)=[x]cos(π2πx)=[x]sin(πx)\Rightarrow f\left( x \right) = \left[ x \right]\cos \left( {\dfrac{\pi }{2} - \pi x} \right) = \left[ x \right]\sin \left( {\pi x} \right)
Now consider the RHL we have,
RHL=limxn+f(x)\Rightarrow RHL = \mathop {\lim }\limits_{x \to {n^ + }} f\left( x \right), where n belongs to real integer values
RHL=limxn+[x]sin(πx)=[n+]sin(πn+)\Rightarrow RHL = \mathop {\lim }\limits_{x \to {n^ + }} \left[ x \right]\sin \left( {\pi x} \right) = \left[ {{n^ + }} \right]\sin \left( {\pi {n^ + }} \right)
Now as we know that sin(n+π)=0\sin \left( {{n^ + }\pi } \right) = 0 for every integer real value of n so we have,
RHL=0\Rightarrow RHL = 0
Now consider the LHL we have,
LHL=limxnf(x)\Rightarrow LHL = \mathop {\lim }\limits_{x \to {n^ - }} f\left( x \right), where n belongs to integer values
LHL=limxn[x]sin(πx)=[n]sin(πn)\Rightarrow LHL = \mathop {\lim }\limits_{x \to {n^ - }} \left[ x \right]\sin \left( {\pi x} \right) = \left[ {{n^ - }} \right]\sin \left( {\pi {n^ - }} \right)
Now as we know that sin(nπ)=0\sin \left( {{n^ - }\pi } \right) = 0 for every integer real value of n so we have,
LHL=0\Rightarrow LHL = 0
So as we see that, LHL = RHL = 0, so the function f (x) continuous for every real value of x.
So this is the required answer.
Hence option (a) is the correct answer.

Note : Whenever we face such types of questions the key concept we have to remember is that always recall some of the trigonometric identities such as cos (a – b) = cos (b – a), as cos (-x) = cos (x), cos(π2x)=sinx\cos \left( {\dfrac{\pi }{2} - x} \right) = \sin x, and the value of sin(nπ)\sin \left( {n\pi } \right) is always zero for every integer real value of n.