Solveeit Logo

Question

Question: If \[f:R\to \left( -1,1 \right)\] is defined by \[f\left( x \right)=\dfrac{-x\left| x \right|}{1+{{x...

If f:R(1,1)f:R\to \left( -1,1 \right) is defined by f(x)=xx1+x2f\left( x \right)=\dfrac{-x\left| x \right|}{1+{{x}^{2}}}, then f1(x){{f}^{-1}}\left( x \right) equals
(a) x1x\sqrt{\dfrac{\left| x \right|}{1-\left| x \right|}}
(b) (x)x1x-\left( x \right)\sqrt{\dfrac{\left| x \right|}{1-\left| x \right|}}
(c) x1x\sqrt{\dfrac{x}{1-x}}
(d) None of these

Explanation

Solution

- Hint:In this question first of all, expand x\left| x \right| by writing it x for x0x\ge 0 and – x for x < 0. Then express x in terms of f(x) and replace x by f1(x){{f}^{-1}}\left( x \right) and f(x) by x. Also the domain and range of f(x) and f1(x){{f}^{-1}}\left( x \right) would be interchanged

Complete step-by-step solution -

We are given function f:R(1,1)f:R\to \left( -1,1 \right) such that f(x)=xx1+x2f\left( x \right)=\dfrac{-x\left| x \right|}{1+{{x}^{2}}}.
Here, we have to find the value of f1(x){{f}^{-1}}\left( x \right). We know that if f:ABf:A\to B, then f1:BA{{f}^{-1}}:B\to A.
Here, as f:R(1,1)f:R\to \left( -1,1 \right), we get f1(1,1)R{{f}^{-1}}\left( -1,1 \right)\to R.
Now, to find f1(x){{f}^{-1}}\left( x \right), we must express x in terms of f(x) and then replace x by f1(x){{f}^{-1}}\left( x \right) and f(x) by x as follows:
First of all, we take,
f(x)=xx1+x2f\left( x \right)=\dfrac{-x\left| x \right|}{1+{{x}^{2}}}
We know that for x0,x=xx\ge 0,\left| x \right|=x
And for x<0,x=xx<0,\left| x \right|=-x
Hence, for x0x\ge 0 and 1<f(x)<0-1< f\left( x \right)<0
We get, f(x)=(x).x1+x2f\left( x \right)=\dfrac{\left( -x \right).x}{1+{{x}^{2}}}
f(x)=x21+x2f\left( x \right)=\dfrac{-{{x}^{2}}}{1+{{x}^{2}}}
Now, by cross multiplying above equation we get,
f(x)(1+x2)=x2f\left( x \right)\left( 1+{{x}^{2}} \right)=-{{x}^{2}}
f(x)+f(x).x2=x2f\left( x \right)+f\left( x \right).{{x}^{2}}=-{{x}^{2}}
f(x).x2+x2=f(x)f\left( x \right).{{x}^{2}}+{{x}^{2}}=-f\left( x \right)
x2[1+f(x)]=f(x){{x}^{2}}\left[ 1+f\left( x \right) \right]=-f\left( x \right)
x2=f(x)[1+f(x)]{{x}^{2}}=\dfrac{-f\left( x \right)}{\left[ 1+f\left( x \right) \right]}
x=f(x)1+f(x)x=\sqrt{\dfrac{-f\left( x \right)}{1+f\left( x \right)}}
Now, to get f1(x){{f}^{-1}}\left( x \right), we will replace x by f1(x){{f}^{-1}}\left( x \right) and f(x) by x.
Hence, we get
f1(x)=x1+x{{f}^{-1}}\left( x \right)=\sqrt{\dfrac{-x}{1+x}} defined for 1<x0-1< x\le 0
Now, for x < 0, we get,
f(x)=(x).(x)1+x2f\left( x \right)=\dfrac{\left( -x \right).\left( -x \right)}{1+{{x}^{2}}}
f(x)=x21+x2f\left( x \right)=\dfrac{{{x}^{2}}}{1+{{x}^{2}}}
Now, by cross multiplying above equation, we get,
f(x)[1+x2]=x2f\left( x \right)\left[ 1+{{x}^{2}} \right]={{x}^{2}}
f(x)+x2f(x)=x2f\left( x \right)+{{x}^{2}}f\left( x \right)={{x}^{2}}
x2f(x)x2=f(x){{x}^{2}}f\left( x \right)-{{x}^{2}}=-f\left( x \right)
x2[f(x)1]=f(x){{x}^{2}}\left[ f\left( x \right)-1 \right]=-f\left( x \right)
x2=f(x)(f(x)1){{x}^{2}}=\dfrac{-f\left( x \right)}{\left( f\left( x \right)-1 \right)}
Multiplying by (– 1) in numerator and denominator, we get,
x2=+f(x)1f(x){{x}^{2}}=\dfrac{+f\left( x \right)}{1-f\left( x \right)}
x=f(x)1f(x)x=\sqrt{\dfrac{f\left( x \right)}{1-f\left( x \right)}}
Now, to get f1(x){{f}^{-1}}\left( x \right), we will replace x by f1(x){{f}^{-1}}\left( x \right) and f(x) by x.
Hence, we get
f1(x)=x1x{{f}^{-1}}\left( x \right)=\sqrt{\dfrac{x}{1-x}} defined for 0x<10\le x<1
Therefore, for x0x\ge 0,
f1(x)=x1+x{{f}^{-1}}\left( x \right)=\sqrt{\dfrac{-x}{1+x}}; – 1 < x < 0
And x < 0, f1(x)=x1x;0x<1{{f}^{-1}}\left( x \right)=\sqrt{\dfrac{x}{1-x}};0\le x<1
We know that x=x\left| x \right|=x when x0x\ge 0 and x=x\left| x \right|=-x when x < 0.
Therefore, we get f1(x)=x1x{{f}^{-1}}\left( x \right)=\sqrt{\dfrac{\left| x \right|}{1-\left| x \right|}} for – 1 < x < 1 as it satisfies both f1(x){{f}^{-1}}\left( x \right).
Therefore, option (a) is the correct answer.

Note: Here students must be careful about modulus function and should remember that in f(x) and f1(x){{f}^{-1}}\left( x \right), the range and domain interchange. Students must take care that when x was greater than 0 in f(x), at that time, when we found f1(x){{f}^{-1}}\left( x \right), x was less than 0. Similarly when x was less than 0 in f(x), at that time when we found f1(x){{f}^{-1}}\left( x \right), x was greater than 0.