Solveeit Logo

Question

Question: If \(f:R\to \left( -1,1 \right)\) be a function defined by \(f\left( x \right)=\dfrac{x}{1+\left| x ...

If f:R(1,1)f:R\to \left( -1,1 \right) be a function defined by f(x)=x1+xf\left( x \right)=\dfrac{x}{1+\left| x \right|}, then ff is:
A. One-one but not onto.
B. Onto but not one-one.
C. Neither one-one nor onto.
D. Both one-one and onto.

Explanation

Solution

For solving this question you should know about the general solution of a function and the terms one-one and onto for a function. In this problem we will check that the function is one-one or not and that is onto or not. We will check both these and come to the final decision.

Complete step by step answer:
According to our question it is asked to check if the function f(x)=x1+xf\left( x \right)=\dfrac{x}{1+\left| x \right|} is one-one or onto or not. So,
f(x)=x1+xf\left( x \right)=\dfrac{x}{1+\left| x \right|}
We know that: \left| x \right|=\left\\{ \begin{aligned} & x,x\ge 0 \\\ & -x,x<0 \\\ \end{aligned} \right.
So,
f\left( x \right)=\left\\{ \begin{aligned} & \dfrac{x}{1+x},x\ge 0 \\\ & \dfrac{x}{1-x},x<0 \\\ \end{aligned} \right.
Now, checking for one-one for x0x\ge 0,
f(x1)=x11+x1,f(x2)=x21+x2f\left( {{x}_{1}} \right)=\dfrac{{{x}_{1}}}{1+{{x}_{1}}},f\left( {{x}_{2}} \right)=\dfrac{{{x}_{2}}}{1+{{x}_{2}}}
Putting f(x1)=f(x2)f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right) , we get,
x11+x1=x21+x2 x1(1+x2)=x2(1+x1) x1+x1x2=x2+x2x1 x1=x2 \begin{aligned} & \dfrac{{{x}_{1}}}{1+{{x}_{1}}}=\dfrac{{{x}_{2}}}{1+{{x}_{2}}} \\\ & \Rightarrow {{x}_{1}}\left( 1+{{x}_{2}} \right)={{x}_{2}}\left( 1+{{x}_{1}} \right) \\\ & \Rightarrow {{x}_{1}}+{{x}_{1}}{{x}_{2}}={{x}_{2}}+{{x}_{2}}{{x}_{1}} \\\ & \Rightarrow {{x}_{1}}={{x}_{2}} \\\ \end{aligned}
And for x<0x<0, we have,
f(x1)=x11x1,f(x2)=x21x2f\left( {{x}_{1}} \right)=\dfrac{{{x}_{1}}}{1-{{x}_{1}}},f\left( {{x}_{2}} \right)=\dfrac{{{x}_{2}}}{1-{{x}_{2}}}
Putting f(x1)=f(x2)f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right) , we get,
x11x1=x21x2 x1(1x2)=x2(1x1) x1x1x2=x2x2x1 x1=x2 \begin{aligned} & \dfrac{{{x}_{1}}}{1-{{x}_{1}}}=\dfrac{{{x}_{2}}}{1-{{x}_{2}}} \\\ & \Rightarrow {{x}_{1}}\left( 1-{{x}_{2}} \right)={{x}_{2}}\left( 1-{{x}_{1}} \right) \\\ & \Rightarrow {{x}_{1}}-{{x}_{1}}{{x}_{2}}={{x}_{2}}-{{x}_{2}}{{x}_{1}} \\\ & \Rightarrow {{x}_{1}}={{x}_{2}} \\\ \end{aligned}
Hence if f(x1)=f(x2)f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right) , therefore ff is one-one.
Let us now check for onto. So,
f\left( x \right)=\left\\{ \begin{aligned} & \dfrac{x}{1+x},x\ge 0 \\\ & \dfrac{x}{1-x},x<0 \\\ \end{aligned} \right.
For x0,f(x)=x1+xx\ge 0,f\left( x \right)=\dfrac{x}{1+x}
Let f(x)=yf\left( x \right)=y,
y=x1+x y(1+x)=x y+xy=x x=y1x \begin{aligned} & \Rightarrow y=\dfrac{x}{1+x} \\\ & \Rightarrow y\left( 1+x \right)=x \\\ & \Rightarrow y+xy=x \\\ & \Rightarrow x=\dfrac{y}{1-x} \\\ \end{aligned}
Let f(x)=yf\left( x \right)=y,
y=x1x y(1x)=x yxy=x x+xy=y x(1+y)=y x=y1+y \begin{aligned} & \Rightarrow y=\dfrac{x}{1-x} \\\ & \Rightarrow y\left( 1-x \right)=x \\\ & \Rightarrow y-xy=x \\\ & \Rightarrow x+xy=y \\\ & \Rightarrow x\left( 1+y \right)=y \\\ & \Rightarrow x=\dfrac{y}{1+y} \\\ \end{aligned}
Thus, x=y1yx=\dfrac{y}{1-y} for x0x\ge 0 and x=y1+yx=\dfrac{y}{1+y} for x<0x < 0.
Here y\in \left\\{ x\in R:-1< x < 1 \right\\}
That is, the value of yy is from -1 to 1, 1<y<1-1 < y < 1.
If y=1y=1, then x=y1yx=\dfrac{y}{1-y} will not be defined.
If y=1y=-1, then x=y1+yx=\dfrac{y}{1+y} will not be defined.
But here 1<y<1-1 < y < 1, so xx is defined for all values of yy and xRx\in R.
Therefore ff is onto.

So, the correct answer is “Option D”.

Note: While solving this type of questions you should be careful about checking the function f(x)f\left( x \right) for one-one and for onto conditions. If both are satisfied, then both the options will be right otherwise the one that is valid will be right.