Solveeit Logo

Question

Mathematics Question on Relations and functions

If f:RSf: R \rightarrow S defined by f(x)=sinx3cosx+ f(x)=\sin x-\sqrt{3} \,\cos\,x+\, 1, is onto, function then S = ?

A

[0, 3]

B

[-1, 1]

C

[0, 1]

D

[-1, 3]

Answer

[-1, 3]

Explanation

Solution

Since 2sinx3cosx2- 2 \leq \,\sin \,x -\sqrt{3} \,\cos\, x\, \leq\, 2 1<sinx3cosx+13\therefore -1 < \sin x - \sqrt{3} \cos\, x \,+ 1 \leq 3 Rf=[1,3]\therefore R_f = [-1, 3] \therefore [-1, 3] holds . {sinx3cosx\[0.3em]=2[12sinx=32cosx]\[0.3em]=2[sin(xπ6)]}\begin{Bmatrix} \because \sin \, x - \sqrt{3} \,\cos \, x \\\[0.3em] = 2\left[\frac{1}{2}\sin \, x= \frac{\sqrt 3}{2}\cos \, x\right] \\\[0.3em] = 2\left[\sin\left(x- \frac{\pi}{6} \right)\right] \end{Bmatrix}