Solveeit Logo

Question

Mathematics Question on Limits

If f:RRf: R \rightarrow R is defined by f(x)=[x3]+x4f(x)=[x-3]+|x-4| for xRx \in R, then limx3f(x)\displaystyle\lim _{x \rightarrow 3} f(x) is equal to

A

-2

B

-1

C

0

D

1

Answer

0

Explanation

Solution

Given that,
f(x)=[x3]+x4f(x)=[x-3]+|x-4|
limx3f(x)=limx3x3+x4\therefore \displaystyle\lim _{x \rightarrow 3^{-}} f(x)=\displaystyle\lim _{x \rightarrow 3^{-}} x-3+x-4
=limh03h3+3h4=\displaystyle\lim _{h \rightarrow 0} 3-h-3+3-h-4
=limh0h+1+h=\displaystyle\lim _{h \rightarrow 0}-h+1+h
=1+1+0=0=-1+1+0=0