Solveeit Logo

Question

Mathematics Question on Differentiability

If f:RRf: R \rightarrow R is defined by f(x)={2sinxsin2x2xcosx, if x0 a, if x=0f(x)=\begin{cases}\frac{2 \sin x-\sin 2 x}{2 x \cos x}, & \text { if } x \neq 0 \\\ a, & \text { if } x=0\end{cases} then the value of a so that f is continuous at 00 is

A

2

B

1

C

-1

D

0

Answer

0

Explanation

Solution

Given,f(x)={2sinxsin2x2xcosx, if x0 a, if x=0Given, f(x)=\begin{cases}\frac{2 \sin x-\sin 2 x}{2 x \cos x}, & \text { if } x \neq 0 \\\ a, & \text { if } x=0\end{cases}

and f is continuous at x=0

\therefore The left hand limit (LHL)

=limx0f(x)= \displaystyle \lim_{x \to 0}f(x)

=limx0cos3xcosxx2= \displaystyle \lim_{x \to 0} \frac{\cos3x-\cos x}{x^2}

=limh0cos3(0h)cos(0h)0h2= \displaystyle \lim_{h \to 0}\frac{\cos3(0-h)-\cos(0-h)}{0-h^2}

=limh0coshcoshh2(00form)= \displaystyle \lim_{h \to 0}\frac{\cosh-\cosh}{h^2} (\frac00 form)

=limh03sin3h+sinh2h= \displaystyle \lim_{h \to 0}-\frac{3\sin3h+\sinh}{2h}

(using L hospital's rule)
= 9+12=4\frac{-9+1}{2}= -4

As per the question f(x) is continuous at x=0

i,e, =limx0f(x)= \displaystyle \lim_{x \to 0}f(x) = f(o)

⇒ -4 = λ

λ = -4