Solveeit Logo

Question

Mathematics Question on Limits

If f:RRf : R \rightarrow R is defined by f(x)={cos 3xcos xx2,for x0 λ,for x=f(x) = \begin{cases} \frac{\cos \ 3x - \cos \ x}{x^2} &, \text{for } x \neq 0 \\\ \lambda &, \text{for } x = \end{cases} and if ff is continuous at x=0,x = 0, then λ\lambda is equal to

A

-2

B

-4

C

-6

D

-8

Answer

-4

Explanation

Solution

The correct option is(B): -4

Given that ,
f(x)={cos 3xcos xx2,for x0 λ,for x=f(x) = \begin{cases} \frac{\cos \ 3x - \cos \ x}{x^2} &, \text{for } x \neq 0 \\\ \lambda &, \text{for } x = \end{cases}
Now, LHL =limx0f(x)=\displaystyle\lim _{x \rightarrow 0^{-}} f(x)
=limx0cos3xcosxx2=\displaystyle\lim _{x \rightarrow 0^{-}} \frac{\cos 3 x-\cos x}{x^{2}}
=limh0cos3(0h)cos0h0h2=\displaystyle\lim _{h \rightarrow 0} \frac{\cos 3(0-h)-\cos 0-h}{0-h^{2}}
=limh0cos3hcoshh2=\displaystyle\lim _{h \rightarrow 0} \frac{\cos 3 h-\cos h}{h^{2}}
=limh03sin3h+sinh2h=\displaystyle\lim _{h \rightarrow 0} \frac{-3 \sin 3 h+\sin h}{2 h} (using L' Hospitals' rule)
=9+12=4=\frac{-9+1}{2}=-4
Since, f(x)f(x) is continuous at x=0x=0
limx0f(x)=f(0)\therefore \displaystyle\lim _{x \rightarrow 0^{-}} f(x)=f(0)
4=λ\Rightarrow-4=\lambda
λ=4\Rightarrow \lambda=-4