Solveeit Logo

Question

Mathematics Question on Relations and functions

If f:R[1,1]f: R \rightarrow[-1,1] and g:RAg: R \rightarrow A are two surjective mappings and sin(g(x)π3)=f(x)24f2(x)\sin \left(g(x)-\frac{\pi}{3}\right)=\frac{f(x)}{2} \sqrt{4-f^{2}(x)}, then A=A=

A

[0,2π3]\left[ 0 , \frac{2\pi}{3}\right]

B

[-1 , 1]

C

(π2,π2)\left( \frac{-\pi}{2} , \frac{\pi}{2}\right)

D

(0,π)(0 , \pi )

Answer

[0,2π3]\left[ 0 , \frac{2\pi}{3}\right]

Explanation

Solution

Let f(x)=y,f(x)=y, then sin(g(x)π3)=f(x)24f2(x)\sin \left(g(x)-\frac{\pi}{3}\right)=\frac{f(x)}{2} \sqrt{4-f^{2}(x)} =y24y2=t=\frac{y}{2} \sqrt{4-y^{2}}=t (let) y2y44=t2\Rightarrow y^{2}-\frac{y^{4}}{4}=t^{2} 4y2y4=4t2\Rightarrow 4 y^{2}-y^{4}=4 t^{2} (y22)2=4t2+4\Rightarrow \left(y^{2}-2\right)^{2}=-4 t^{2}+4 t2=114(y22)2\Rightarrow t^{2}=1-\frac{1}{4}\left(y^{2}-2\right)^{2} f(x)=y[1,1]\because f(x)=y \in[-1,1] y2[0,1]\Rightarrow y^{2} \in[0,1] t2[0,34]\therefore t^{2} \in\left[0, \frac{3}{4}\right] t[32,32]\Rightarrow t \in\left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right] So, sin(g(x)π3)[32,32]\sin \left(g(x)-\frac{\pi}{3}\right) \in\left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right] g(x)π3[π3,π3]\Rightarrow g(x)-\frac{\pi}{3} \in\left[-\frac{\pi}{3}, \frac{\pi}{3}\right] g(x)[0,2π3]\Rightarrow g(x) \in\left[0, \frac{2 \pi}{3}\right]