Question
Mathematics Question on Relations and functions
If f:R→[−1,1] and g:R→A are two surjective mappings and sin(g(x)−3π)=2f(x)4−f2(x), then A=
A
[0,32π]
B
[-1 , 1]
C
(2−π,2π)
D
(0,π)
Answer
[0,32π]
Explanation
Solution
Let f(x)=y, then sin(g(x)−3π)=2f(x)4−f2(x) =2y4−y2=t (let) ⇒y2−4y4=t2 ⇒4y2−y4=4t2 ⇒(y2−2)2=−4t2+4 ⇒t2=1−41(y2−2)2 ∵f(x)=y∈[−1,1] ⇒y2∈[0,1] ∴t2∈[0,43] ⇒t∈[−23,23] So, sin(g(x)−3π)∈[−23,23] ⇒g(x)−3π∈[−3π,3π] ⇒g(x)∈[0,32π]