Question
Mathematics Question on Complex Numbers and Quadratic Equations
If f(z)=1−z1−z3, where z=x+iy with z=1, then Re\left\\{\overline{f \left(z\right)}\right\\}=0 reduces to
A
x2+y2+x+1=0
B
x2−y2+x+1=0
C
x2−y2−x+1=0
D
x2−y2+x−1=0
Answer
x2−y2+x−1=0
Explanation
Solution
f(z)=1−z1−z3=(1−z)(1−z)(1+z+z2)
=1+z+z2
Put z=x+iy, we get
f(z)=1+x+iy+(x+iy)2
=1+x+iy+x2+2xyi+i2y2
=(1+x+x2−y2)+i(y+2xy)
⇒f(z)=(1+x+x2−y2)−i(y+2xy)
Now, Ref(z)=0
⇒1+x+x2−y2=0
⇒x2−y2+x+1=0