Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If f(z)=1z31z,f \left(z\right)=\frac{1-z^{3}}{1-z} , where z=x+iyz=x+iy with z1,z\ne1, then Re\left\\{\overline{f \left(z\right)}\right\\}=0 reduces to

A

x2+y2+x+1=0x^{2}+y^{2}+x+1=0

B

x2y2+x+1=0x^{2}-y^{2}+x+1=0

C

x2y2x+1=0x^{2}-y^{2}-x+1=0

D

x2y2+x1=0x^{2}-y^{2}+x-1=0

Answer

x2y2+x1=0x^{2}-y^{2}+x-1=0

Explanation

Solution

f(z)=1z31z=(1z)(1+z+z2)(1z)f(z) =\frac{1-z^{3}}{1-z}=\frac{(1-z)\left(1+z+z^{2}\right)}{(1-z)}
=1+z+z2=1+z+z^{2}
Put z=x+iyz=x+i y, we get
f(z)=1+x+iy+(x+iy)2f(z)=1+x+i y+(x+i y)^{2}
=1+x+iy+x2+2xyi+i2y2=1+x+i y+x^{2}+2 x y i+i^{2} y^{2}
=(1+x+x2y2)+i(y+2xy)=\left(1+x+x^{2}-y^{2}\right)+i(y+2 x y)
f(z)=(1+x+x2y2)i(y+2xy)\Rightarrow f \overline{(z)} =\left(1+x+x^{2}-y^{2}\right)-i(y+2 x y)
Now, Ref(z)=0\operatorname{Re}\\{f \overline{(z)}\\}=0
1+x+x2y2=0\Rightarrow 1+x+x^{2}-y^{2}=0
x2y2+x+1=0\Rightarrow x^{2}-y^{2}+x+1=0