Solveeit Logo

Question

Question: If \(f\left( xy \right)=f\left( x \right).f\left( y \right)\forall x,\And f'\left( 1 \right)=2,\)the...

If f(xy)=f(x).f(y)x,&f(1)=2,f\left( xy \right)=f\left( x \right).f\left( y \right)\forall x,\And f'\left( 1 \right)=2,then test the differentiability of f(x)f\left( x \right).

Explanation

Solution

Hint: Since we have to test the differentiability, we have to find the derivative of the function. We can find derivatives using the first principle of derivative and using the functional relation given in the question.

Complete step-by-step answer:
It is given in the question f(xy)=f(x).f(y) &f(1)=2f\left( xy \right)=f\left( x \right).f\left( y \right)\text{ }\And f'\left( 1 \right)=2.
In such types of questions, to test the differentiability of the functionf(x)f\left( x \right), it is required to find the derivative f(x)f'\left( x \right). To find f(x)f'\left( x \right), we have to follow certain steps;
1. We will use the first principle to find f(x)f'\left( x \right).
According to first principle;
f(x)=limh0f(x+h)f(x)h f(x)=limh0f(x(1+hx))f(x)h.........(I) \begin{aligned} & f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h} \\\ & \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x\left( 1+\dfrac{h}{x} \right) \right)-f\left( x \right)}{h}.........\left( I \right) \\\ \end{aligned}
Since it is given f(xy)=f(x).f(y)f\left( xy \right)=f\left( x \right).f\left( y \right) we can substitute f(x(1+hx))=f(x).f(1+hx)f\left( x\left( 1+\dfrac{h}{x} \right) \right)=f\left( x \right).f\left( 1+\dfrac{h}{x} \right) in (I)\left( I \right);
f(x)=limh0f(x)f(1+hx)f(x)h f(x)=limh0f(x)(f(1+hx)1)h \begin{aligned} & \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)f\left( 1+\dfrac{h}{x} \right)-f\left( x \right)}{h} \\\ & \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( x \right)\dfrac{\left( f\left( 1+\dfrac{h}{x} \right)-1 \right)}{h} \\\ \end{aligned}
Since the limit is with respect to hh, we get functions of xx out of the limit.

f(x)=f(x)limh0f(1+hx)1h.........(II)\Rightarrow f'\left( x \right)=f\left( x \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-1}{h}.........\left( II \right)
We cannot proceed further in step 1. So now, we will proceed to step 2.
2. We will find some boundary values of f(x)f\left( x \right).
Given f(xy)=f(x).f(y)f\left( xy \right)=f\left( x \right).f\left( y \right)
Let us assume x=1,y=1x=1,y=1.
f(1)=f(1)×f(1) f(1)=(f(1))2 \begin{aligned} & \Rightarrow f\left( 1 \right)=f\left( 1 \right)\times f\left( 1 \right) \\\ & \Rightarrow f\left( 1 \right)={{\left( f\left( 1 \right) \right)}^{2}} \\\ \end{aligned}
Cancelling f(1)f\left( 1 \right) both sides, we get;
f(1)=1..............(III)f\left( 1 \right)=1..............\left( III \right)
From (III)\left( III \right), we will substitute 11 as f(1)f\left( 1 \right) in (II)\left( II \right),
f(x)=f(x)limh0f(1+hx)f(1)h\Rightarrow f'\left( x \right)=f\left( x \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{h}
Let us multiple and divide the denominator with xx.
f(x)=f(x)limh0f(1+hx)f(1)x.hx\Rightarrow f'\left( x \right)=f\left( x \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{x.\dfrac{h}{x}}
Since the limit is with respect to hh, we can take 1x\dfrac{1}{x} out of the limit. Also, we can replace limh0\underset{h\to 0}{\mathop{\lim }}\, by limhx0\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,.
f(x)=f(x)xlimhx0f(1+hx)f(1)hx.........(IV)f'\left( x \right)=\dfrac{f\left( x \right)}{x}\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{\dfrac{h}{x}}.........\left( IV \right)
Consider the first principle
f(x)=limh0f(x+h)f(x)hf'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}
Let us put x=1,h=hxx=1,h=\dfrac{h}{x}.
f(1)=limhx0f(1+hx)f(1)hx...........(V)\Rightarrow f'\left( 1 \right)=\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{\dfrac{h}{x}}...........\left( V \right)
So, substituting limhx0f(1+hx)f(1)hx\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{\dfrac{h}{x}}from (V)\left( V \right) in (IV)\left( IV \right), we get;
f(x)=f(x)x.f(1)\Rightarrow f'\left( x \right)=\dfrac{f\left( x \right)}{x}.f'\left( 1 \right)
It is given in the question f(1)=2f'\left( 1 \right)=2.
f(x)=2f(x)x..........(VI)\Rightarrow f'\left( x \right)=\dfrac{2f\left( x \right)}{x}..........\left( VI \right)
Let us substitute f(x)=yf\left( x \right)=y
f(x)=dydx\Rightarrow f'\left( x \right)=\dfrac{dy}{dx}
Substituting f(x)f\left( x \right)and  f(x)\text{ }f'\left( x \right) in (VI)\left( VI \right);
dydx=2yx 1ydy=2.1xdx \begin{aligned} & \dfrac{dy}{dx}=\dfrac{2y}{x} \\\ & \Rightarrow \dfrac{1}{y}dy=2.\dfrac{1}{x}dx \\\ \end{aligned}
Integrating both sides;
1ydy=21xdx\int{\dfrac{1}{y}dy=2\int{\dfrac{1}{x}dx}}
We know 1xdx=lnx\int{\dfrac{1}{x}dx=lnx} and 1ydy=lny\int{\dfrac{1}{y}dy=lny};

& \Rightarrow lny=2lnx\text{ } \\\ & \Rightarrow lny=ln{{x}^{2}},\text{ }\because 2lnx=ln{{x}^{2}} \\\ & \Rightarrow y={{x}^{2}} \\\ \end{aligned}$$ Differentiating with respect to $x$; $y'=2x$ Let us plot the graph of $y'$; ![](https://www.vedantu.com/question-sets/c9679c66-a190-4018-813c-1bc2a01be4302873578075631990889.png) Since $y'=2x$ is a continuous function, we can say $y$ is differentiable for all $x.$ Sine $y'=2x$, we can say that $f\left( x \right)$ is differentiable $\forall x\in R.$ Note: There is a possibility of mistake while finding the boundary value of the function in step 2. The boundary value is to be found by taking help of the information given in the question. Like it was given in the question that $f'\left( 1 \right)=2$ that is why we had to find the value of $f\left( 1 \right)$ in step 2.