Solveeit Logo

Question

Question: If \[f\left( {x + y} \right) = f\left( x \right)f\left( y \right)\] for all \[x,y \in R\], \[f\left(...

If f(x+y)=f(x)f(y)f\left( {x + y} \right) = f\left( x \right)f\left( y \right) for all x,yRx,y \in R, f(5)=2f\left( 5 \right) = 2, and f(0)=3f'\left( 0 \right) = 3, then f(5)f'\left( 5 \right) equals
(a) 6
(b) 3
(c) 5
(d) None of these

Explanation

Solution

Here, we need to find the value of f(5)f'\left( 5 \right). First, we will find the value of f(0)f\left( 0 \right). Then, we will differentiate the given function and simplify the equation. Finally, we will substitute the values in the derivative and, using the given information, find the required value of f(5)f'\left( 5 \right).
Formula Used: The product rule of differentiation states that the derivative of the product of two functions is given as d(uv)dx=ud(v)dx+d(u)dxv\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + \dfrac{{d\left( u \right)}}{{dx}}v.

Complete step by step solution:
First, we will find the value of f(0)f\left( 0 \right).
Substituting x=5x = 5 and y=0y = 0 in the equation f(x+y)=f(x)f(y)f\left( {x + y} \right) = f\left( x \right)f\left( y \right), we get
\Rightarrow f\left( {5 + 0} \right) = f\left( 5 \right)f\left( 0 \right) \\\ \Rightarrow f\left( 5 \right) = f\left( 5 \right)f\left( 0 \right) \\\
Substituting f(5)=2f\left( 5 \right) = 2 in the expression, we get
\Rightarrow 2 = 2 \times f\left( 0 \right) \\\ \Rightarrow 2 = 2f\left( 0 \right) \\\
Dividing both sides of the equation by 2, we get
22=2f(0)2\Rightarrow \dfrac{2}{2} = \dfrac{{2f\left( 0 \right)}}{2}
Thus, we get
f(0)=1\Rightarrow f\left( 0 \right) = 1
Now, we will differentiate the given function.
Differentiating both sides of the equation f(x+y)=f(x)f(y)f\left( {x + y} \right) = f\left( x \right)f\left( y \right) with respect to xx, we get
d[f(x+y)]dx=d[f(x)f(y)]dx\dfrac{{d\left[ {f\left( {x + y} \right)} \right]}}{{dx}} = \dfrac{{d\left[ {f\left( x \right)f\left( y \right)} \right]}}{{dx}}
The product rule of differentiation states that the derivative of the product of two functions is given as d(uv)dx=ud(v)dx+d(u)dxv\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + \dfrac{{d\left( u \right)}}{{dx}}v.
Simplifying the equation using the product rule of differentiation, we get
d[f(x+y)]dx=f(x)d[f(y)]dx+d[f(x)]dxf(y)\Rightarrow \dfrac{{d\left[ {f\left( {x + y} \right)} \right]}}{{dx}} = f\left( x \right)\dfrac{{d\left[ {f\left( y \right)} \right]}}{{dx}} + \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}f\left( y \right)
Simplifying the equation using the chain rule of differentiation, we get
f(x+y)d(x+y)dx=f(x)f(y)d(y)dx+f(x)f(y)\Rightarrow f'\left( {x + y} \right)\dfrac{{d\left( {x + y} \right)}}{{dx}} = f\left( x \right)f'\left( y \right)\dfrac{{d\left( y \right)}}{{dx}} + f'\left( x \right)f\left( y \right)
The differential d(x+y)dx\dfrac{{d\left( {x + y} \right)}}{{dx}} is the derivative of the sum of two functions.
Therefore, we get
f(x+y)[d(x)dx+d(y)dx]=f(x)f(y)d(y)dx+f(x)f(y)\Rightarrow f'\left( {x + y} \right)\left[ {\dfrac{{d\left( x \right)}}{{dx}} + \dfrac{{d\left( y \right)}}{{dx}}} \right] = f\left( x \right)f'\left( y \right)\dfrac{{d\left( y \right)}}{{dx}} + f'\left( x \right)f\left( y \right)
Simplifying the expression and rewriting d(y)dx\dfrac{{d\left( y \right)}}{{dx}} as yy', we get
f(x+y)[1+y]=f(x)f(y)y+f(x)f(y)\Rightarrow f'\left( {x + y} \right)\left[ {1 + y'} \right] = f\left( x \right)f'\left( y \right)y' + f'\left( x \right)f\left( y \right)
Substituting x=5x = 5 and y=0y = 0 in the equation, we get
\Rightarrow f'\left( {5 + 0} \right)\left[ {1 + y'} \right] = f\left( 5 \right)f'\left( 0 \right)y' + f'\left( 5 \right)f\left( 0 \right) \\\ \Rightarrow f'\left( 5 \right)\left[ {1 + y'} \right] = f\left( 5 \right)f'\left( 0 \right)y' + f'\left( 5 \right)f\left( 0 \right) \\\
Substituting f(0)=1f\left( 0 \right) = 1, f(5)=2f\left( 5 \right) = 2, and f(0)=3f'\left( 0 \right) = 3 in the equation, we get
f(5)[1+y]=2×3×y+f(5)×1\Rightarrow f'\left( 5 \right)\left[ {1 + y'} \right] = 2 \times 3 \times y' + f'\left( 5 \right) \times 1
Multiplying the terms in the expression, we get
f(5)[1+y]=6y+f(5)\Rightarrow f'\left( 5 \right)\left[ {1 + y'} \right] = 6y' + f'\left( 5 \right)
Multiplying f(5)f'\left( 5 \right) by [1+y]\left[ {1 + y'} \right] using the distributive law of multiplication, we get
f(5)+f(5)y=6y+f(5)\Rightarrow f'\left( 5 \right) + f'\left( 5 \right)y' = 6y' + f'\left( 5 \right)
Subtracting f(5)f'\left( 5 \right) from both sides of the equation, we get
\Rightarrow f'\left( 5 \right) + f'\left( 5 \right)y' - f'\left( 5 \right) = 6y' + f'\left( 5 \right) - f'\left( 5 \right) \\\ \Rightarrow f'\left( 5 \right)y' = 6y' \\\
Dividing both sides of the equation by yy', we get
f(5)yy=6yy\Rightarrow \dfrac{{f'\left( 5 \right)y'}}{{y'}} = \dfrac{{6y'}}{{y'}}
Thus, we get
f(5)=6\therefore f'\left( 5 \right) = 6
Therefore, we get the value of f(5)f'\left( 5 \right) as 6.

Thus, the correct option is option (a).

Note:
We have used the distributive law of multiplication in the solution. The distributive law of multiplication states that a(b+c)=ab+aca\left( {b + c} \right) = a \cdot b + a \cdot c.
We rewrote the differential d(x+y)dx\dfrac{{d\left( {x + y} \right)}}{{dx}} asd(x)dx+d(y)dx\dfrac{{d\left( x \right)}}{{dx}} + \dfrac{{d\left( y \right)}}{{dx}} because d(x+y)dx\dfrac{{d\left( {x + y} \right)}}{{dx}} is the derivative of the sum of two functions. The derivative of the sum of two functions is the sum of the derivatives of the two functions, that is d[f(x)+g(x)]dx=d[f(x)]dx+d[g(x)]dx\dfrac{{d\left[ {f\left( x \right) + g\left( x \right)} \right]}}{{dx}} = \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} + \dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}.