Solveeit Logo

Question

Question: If \[f\left( {x + y} \right) = f\left( x \right) \times f\left( y \right)\]and \[f\left( 5 \right) =...

If f(x+y)=f(x)×f(y)f\left( {x + y} \right) = f\left( x \right) \times f\left( y \right)and f(5)=32    f\left( 5 \right) = 32\;\; then f(7)f\left( {7} \right) is equal to
A) 3535
B) 3636
C) 75\dfrac{7}{5}
D) 128128

Explanation

Solution

A function can be explained as a rule which takes each member x of a set and assigns, or maps it to an equivalent value of y known at its image.
x → Function → y
In this problem we will substitute the value of x and y till we get x+y=5x + y = 5. Then try to find the value of f(1)f\left( {1} \right). Then using this value we will find the value of f(7)f\left( {7} \right).

Complete step-by-step answer:
We have been given in the problem,
f(x+y)=f(x)×f(y)f\left( {x + y} \right) = f\left( x \right) \times f\left( y \right) and f(5)=32    f\left( 5 \right) = 32\;\;
Taking x = y = 1x{\text{ }} = {\text{ }}y{\text{ }} = {\text{ }}1 in above equation, we obtain
f(1+1) = f(2)= f(1)f(1)=[f(1)]2f\left( {1 + 1} \right){\text{ = }}f\left( 2 \right) = {\text{ }}f\left( 1 \right)f\left( 1 \right) = {\left[ {f(1)} \right]^2}
Similarly,
Taking x = 2x{\text{ }} = {\text{ 2}} and y = 1y{\text{ }} = {\text{ }}1 in above equation, we obtain
f(2+1) = f(3)= f(2)f(1)=[f(1)]3f\left( {2 + 1} \right){\text{ = }}f\left( 3 \right) = {\text{ }}f\left( 2 \right)f\left( 1 \right) = {\left[ {f(1)} \right]^3}
Taking x = 2x{\text{ }} = {\text{ 2}} and y = 2y{\text{ }} = {\text{ 2}} in above equation, we obtain
f(2+2) = f(4)= f(2)f(2)=[f(1)]4f\left( {2 + 2} \right){\text{ = }}f\left( 4 \right) = {\text{ }}f\left( 2 \right)f\left( 2 \right) = {\left[ {f(1)} \right]^4}
Taking x = 2x{\text{ }} = {\text{ 2}} and y = 3y{\text{ }} = {\text{ 3}} in above equation, we obtain
f(2+3) = f(5)= f(2)f(3)=[f(1)]5f\left( {2 + 3} \right){\text{ = }}f\left( 5 \right) = {\text{ }}f\left( 2 \right)f\left( 3 \right) = {\left[ {f(1)} \right]^5}
Now replacing the value of f(5)f(5) fromf(5)=32    f\left( 5 \right) = 32\;\; in the above equation, we get:
f(5)=32    =[f(1)]5\Rightarrow f\left( 5 \right) = 32\;\; = {\left[ {f(1)} \right]^5}
[f(1)]5=25\Rightarrow {\left[ {f(1)} \right]^5} = {2^5}
f(1)=2\Rightarrow f(1) = 2
We have to find the value of f(7)f\left( {7} \right).
As we know 7= 2+5 and we already have a value of f(5)f(5) so we will just calculate the value of f(2)f(2)
As we know  f(2)=[f(1)]2{\text{ }}f\left( 2 \right) = {\left[ {f(1)} \right]^2}
f(2)=22=4\Rightarrow f(2) = {2^2} = 4
Hence, for finding the value of f(7)f\left( {7} \right) using the equation given f(x+y)=f(x)×f(y)f\left( {x + y} \right) = f\left( x \right) \times f\left( y \right) we get
f(7)=f(5+2)=f(5)×f(2)\Rightarrow f(7) = f(5 + 2) = f(5) \times f(2)
Now substituting the value of f(5)f(5) and f(2)f(2)we get:
f(7)=32×4=128\Rightarrow f(7) = 32 \times 4 = 128
So, If f(x+y)=f(x)×f(y)f\left( {x + y} \right) = f\left( x \right) \times f\left( y \right) and f(5)=32    f\left( 5 \right) = 32\;\;then f(7)f\left( {7} \right) is equal to 128128.

Therefore, the option (D) is the correct answer.

Note: We can solve the question by second method in which we will keep on calculation the values of f(2),f(3),f(4),f(5),f(6)f(2),f(3),f(4),f(5),f(6) and f(7)f\left( {7} \right) in terms of f(1)f(1).
Taking x = 3x{\text{ }} = {\text{ 3}} and y = 3y{\text{ }} = {\text{ 3}} in above equation, we obtain
f(3+3) = f(6)= f(3)f(3)=[f(1)]6f\left( {3 + 3} \right){\text{ = }}f\left( 6 \right) = {\text{ }}f\left( 3 \right)f\left( 3 \right) = {\left[ {f(1)} \right]^6}
Taking x = 4x{\text{ }} = {\text{ 4}} and y = 3y{\text{ }} = {\text{ 3}} in above equation, we obtain
f(4+3) = f(7)= f(4)f(3)=[f(1)]7f\left( {4 + 3} \right){\text{ = }}f\left( 7 \right) = {\text{ }}f\left( 4 \right)f\left( 3 \right) = {\left[ {f(1)} \right]^7}
After this substituting the value of f(1)=2f(1) = 2 in the above equation we get:
f(7)=27=128\Rightarrow f(7) = {2^7} = 128