Solveeit Logo

Question

Question: If \(f\left( x+y \right)=2f\left( x \right)f\left( y \right)\) , \(f'\left( 5 \right)=1024\left( \lo...

If f(x+y)=2f(x)f(y)f\left( x+y \right)=2f\left( x \right)f\left( y \right) , f(5)=1024(log2)f'\left( 5 \right)=1024\left( \log 2 \right) , f(2)=8f\left( 2 \right)=8 , then the value of f(3)f'\left( 3 \right) is:

  1. 64(log2)64\left( \log 2 \right)
  2. 128(log2)128\left( \log 2 \right)
  3. 256256
  4. 256(log2)256\left( \log 2 \right)
Explanation

Solution

Here in this question we have been asked to find the value of f(3)f'\left( 3 \right) given thatf(x+y)=2f(x)f(y)f\left( x+y \right)=2f\left( x \right)f\left( y \right) , f(5)=1024(log2)f'\left( 5 \right)=1024\left( \log 2 \right) and f(2)=8f\left( 2 \right)=8. For answering this question we will use the concept given as f(x)=limh0f(x+h)f(x)hf'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h} and simplify using the given information.

Complete step-by-step solution:
Now considering from the question we have been asked to find the value of f(3)f'\left( 3 \right) given thatf(x+y)=2f(x)f(y)f\left( x+y \right)=2f\left( x \right)f\left( y \right) , f(5)=1024(log2)f'\left( 5 \right)=1024\left( \log 2 \right) and f(2)=8f\left( 2 \right)=8.
From the basic concepts of derivations, we know that we can say that f(x)=limh0f(x+h)f(x)hf'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h} we will use this to answer the question.
Here in this question as we know that f(x+y)=2f(x)f(y)f\left( x+y \right)=2f\left( x \right)f\left( y \right) by using this in the above expression we can conclude that
f(x)=limh0f(x+h)f(x)h f(x)=limh02f(x)f(h)f(x)h f(x)=f(x)limh02f(h)1h \begin{aligned} & f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h} \\\ & \Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2f\left( x \right)f\left( h \right)-f\left( x \right)}{h} \\\ & \Rightarrow f'\left( x \right)=f\left( x \right)\displaystyle \lim_{h \to 0}\dfrac{2f\left( h \right)-1}{h} \\\ \end{aligned} .
As we need the value of f(3)f'\left( 3 \right) we can say that f(3)=limh0f(3+h)f(3)hf'\left( 3 \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( 3+h \right)-f\left( 3 \right)}{h} .
Now as we know that f(x+y)=2f(x)f(y)f\left( x+y \right)=2f\left( x \right)f\left( y \right) by using this in the above expression we will have f(3)=limh02f(3)f(h)f(3)h\Rightarrow f'\left( 3 \right)=\displaystyle \lim_{h \to 0}\dfrac{2f\left( 3 \right)f\left( h \right)-f\left( 3 \right)}{h} .
Now we will take out f(3)f\left( 3 \right) as it is a constant. By doing that we will have f(3)=f(3)limh02f(h)1h\Rightarrow f'\left( 3 \right)=f\left( 3 \right)\displaystyle \lim_{h \to 0}\dfrac{2f\left( h \right)-1}{h} .
Now we will try to evaluate f(5)f'\left( 5 \right) by doing that we will have f(5)=f(5)limh02f(h)1h 1024(log2)=2f(3)f(2)[limh02f(h)1h] \begin{aligned} & \Rightarrow f'\left( 5 \right)=f\left( 5 \right)\displaystyle \lim_{h \to 0}\dfrac{2f\left( h \right)-1}{h} \\\ & \Rightarrow 1024\left( \log 2 \right)=2f\left( 3 \right)f\left( 2 \right)\left[ \displaystyle \lim_{h \to 0}\dfrac{2f\left( h \right)-1}{h} \right] \\\ \end{aligned}.
Now by using f(2)=8f\left( 2 \right)=8 in the above expression we will have 1024(log2)=16f(3)[limh02f(h)1h] 64(log2)=f(3)[limh02f(h)1h] \begin{aligned} & \Rightarrow 1024\left( \log 2 \right)=16f\left( 3 \right)\left[ \displaystyle \lim_{h \to 0}\dfrac{2f\left( h \right)-1}{h} \right] \\\ & \Rightarrow 64\left( \log 2 \right)=f\left( 3 \right)\left[ \displaystyle \lim_{h \to 0}\dfrac{2f\left( h \right)-1}{h} \right] \\\ \end{aligned} .
Therefore we can conclude that the value of f(3)f'\left( 3 \right) is given as 64(log2)64\left( \log 2 \right) given thatf(x+y)=2f(x)f(y)f\left( x+y \right)=2f\left( x \right)f\left( y \right) , f(5)=1024(log2)f'\left( 5 \right)=1024\left( \log 2 \right) and f(2)=8f\left( 2 \right)=8.
Hence we will mark the option “1” as correct.

Note: While answering questions of this type we just need to clearly interpret the given information in the correct place. Here by simply analyzing the given information in a correct method will strive for the answer. Very few mistakes are possible.