Solveeit Logo

Question

Question: If \(f\left( x \right)={{x}^{4}}+9{{x}^{3}}+35{{x}^{2}}-x+4\) , find \(f\left( -5+4i \right)\)...

If f(x)=x4+9x3+35x2x+4f\left( x \right)={{x}^{4}}+9{{x}^{3}}+35{{x}^{2}}-x+4 , find f(5+4i)f\left( -5+4i \right)

Explanation

Solution

We need to find the value of the given function at x=5+4ix=-5+4i . We start to solve the given question by finding out the quadratic equation in x. Then, we divide the function f(x)f\left( x \right) with the quadratic equation to get the desired result.

Complete step by step answer:
We are given a function f(x)f\left( x \right) and are asked to find the value of the function at x=5+4ix=-5+4i . We will be solving the given question by finding the quadratic equation in x and then divide the function f(x)f\left( x \right) with the quadratic equation.
According to our question,
x=5+4i\Rightarrow x=-5+4i
Moving the term -5 to the other side of the equation, we get,
x+5=4i\Rightarrow x+5=4i
Squaring the above equation on both sides, we get,
(x+5)2=(4i)2\Rightarrow {{\left( x+5 \right)}^{2}}={{\left( 4i \right)}^{2}}
Expanding the squares in the above equation, we get,
x2+10x+25=16i2\Rightarrow {{x}^{2}}+10x+25=16{{i}^{2}}
From complex numbers, we know that the value of i2=1{{i}^{2}}=-1
Substituting the same in the above equation, we get,
x2+10x+25=16\Rightarrow {{x}^{2}}+10x+25=-16
Moving the term -16 to the other side of the equation, we get,
x2+10x+25+16=0\Rightarrow {{x}^{2}}+10x+25+16=0
Simplifying the above equation, we get,
x2+10x+41=0\Rightarrow {{x}^{2}}+10x+41=0
Now, we need to divide If f(x)=x4+9x3+35x2x+4f\left( x \right)={{x}^{4}}+9{{x}^{3}}+35{{x}^{2}}-x+4 by x2+10x+41{{x}^{2}}+10x+41
Here,
Dividend = x4+9x3+35x2x+4{{x}^{4}}+9{{x}^{3}}+35{{x}^{2}}-x+4
Divisor = x2+10x+41{{x}^{2}}+10x+41
We need to divide the first term of the dividend with the first term of the divisor.
x4x2=x2\Rightarrow \dfrac{{{x}^{4}}}{{{x}^{2}}}={{x}^{2}}
Multiplying x2{{x}^{2}} with the divisor,
x2(x2+10x+41)\Rightarrow {{x}^{2}}\left( {{x}^{2}}+10x+41 \right)
Multiplying x2{{x}^{2}} to each term of the expression, we get,
x4+10x3+41x2\Rightarrow {{x}^{4}}+10{{x}^{3}}+41{{x}^{2}}
Subtracting the dividend from the above expression,
(x4+9x3+35x2x+4)(x4+10x3+41x2)\Rightarrow \left( {{x}^{4}}+9{{x}^{3}}+35{{x}^{2}}-x+4 \right)-\left( {{x}^{4}}+10{{x}^{3}}+41{{x}^{2}} \right)
Simplifying the above expression, we get,
x36x2x+4\Rightarrow -{{x}^{3}}-6{{x}^{2}}-x+4
The above steps can be represented as follows,
x2+10x+41)x4+9x3+35x2x+4 x4+10x3+41x2 () () () x36x2x+4 x2{{x}^{2}}+10x+41\overset{{{x}^{2}}}{\overline{\left){\begin{aligned} & {{x}^{4}}+9{{x}^{3}}+35{{x}^{2}}-x+4 \\\ & {{x}^{4}}+10{{x}^{3}}+41{{x}^{2}} \\\ & \underline{\left( - \right)\text{ }\left( - \right)\text{ }\left( - \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \\\ & -{{x}^{3}}-6{{x}^{2}}-x+4 \\\ \end{aligned}}\right.}}
Now, we need to divide the first term of x36x2x+4-{{x}^{3}}-6{{x}^{2}}-x+4 with the first term of the divisor.
x3x2=x\Rightarrow \dfrac{-{{x}^{3}}}{{{x}^{2}}}=-x
Multiplying x-x with the divisor,
x(x2+10x+41)\Rightarrow -x\left( {{x}^{2}}+10x+41 \right)
Multiplying x-x to each term of the expression, we get,
x310x241x\Rightarrow -{{x}^{3}}-10{{x}^{2}}-41x
Subtracting x36x2x-{{x}^{3}}-6{{x}^{2}}-x and the above expression,
(x36x2x+4)(x310x241x)\Rightarrow \left( -{{x}^{3}}-6{{x}^{2}}-x+4 \right)-\left( -{{x}^{3}}-10{{x}^{2}}-41x \right)
Simplifying the above expression, we get,
4x2+40x+4\Rightarrow 4{{x}^{2}}+40x+4
The above steps can be represented as follows,
x2+10x+41)x4+9x3+35x2x+4 x4+10x3+41x2 () () () x36x2x+4  x310x241x  (+)(+)(+) 4x2+40x+4 x2x{{x}^{2}}+10x+41\overset{{{x}^{2}}-x}{\overline{\left){\begin{aligned} & {{x}^{4}}+9{{x}^{3}}+35{{x}^{2}}-x+4 \\\ & {{x}^{4}}+10{{x}^{3}}+41{{x}^{2}} \\\ & \underline{\left( - \right)\text{ }\left( - \right)\text{ }\left( - \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \\\ & -{{x}^{3}}-6{{x}^{2}}-x+4 \\\ & \text{ }-{{x}^{3}}-10{{x}^{2}}-41x \\\ & \,\underline{\text{ }\,\left( + \right)\,\,\left( + \right)\,\,\,\,\,\,\,\left( + \right)} \\\ & 4{{x}^{2}}+40x+4 \\\ \end{aligned}}\right.}}
Now, we need to divide the first term of 4x2+40x+44{{x}^{2}}+40x+4 with the first term of the divisor.
4x2x2=4\Rightarrow \dfrac{4{{x}^{2}}}{{{x}^{2}}}=4
Multiplying 4 with the divisor,
4(x2+10x+41)\Rightarrow 4\left( {{x}^{2}}+10x+41 \right)
Multiplying 44 to each term of the expression, we get,
4x2+40x+164\Rightarrow 4{{x}^{2}}+40x+164
Subtracting 4x2+40x+44{{x}^{2}}+40x+4 from the above expression,
(4x2+40x+4)(4x2+40x+4)\Rightarrow \left( 4{{x}^{2}}+40x+4 \right)-\left( 4{{x}^{2}}+40x+4 \right)
Simplifying the above expression, we get,
160\Rightarrow -160
The above steps can be represented as follows,
x2+10x+41)x4+9x3+35x2x+4 x4+10x3+41x2 () () () x36x2x+4  x310x241x  (+)(+)(+) 4x2+40x+4  4x2+40x+164  () () () 160 x2x+4{{x}^{2}}+10x+41\overset{{{x}^{2}}-x+4}{\overline{\left){\begin{aligned} & {{x}^{4}}+9{{x}^{3}}+35{{x}^{2}}-x+4 \\\ & {{x}^{4}}+10{{x}^{3}}+41{{x}^{2}} \\\ & \underline{\left( - \right)\text{ }\left( - \right)\text{ }\left( - \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \\\ & -{{x}^{3}}-6{{x}^{2}}-x+4 \\\ & \text{ }-{{x}^{3}}-10{{x}^{2}}-41x \\\ & \,\underline{\text{ }\,\left( + \right)\,\,\left( + \right)\,\,\,\,\,\,\,\left( + \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \\\ & 4{{x}^{2}}+40x+4 \\\ & \text{ }4{{x}^{2}}+40x+164 \\\ & \underline{\text{ }\left( - \right)\text{ }\left( - \right)\text{ }\,\,\,\left( - \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \\\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-160 \\\ \end{aligned}}\right.}}
The degree of the remainder polynomial 160-160 is 0.
The degree of the divisor polynomial (x2+10x+41)\left( {{x}^{2}}+10x+41 \right) is 2.
As the degree of the remainder polynomial is less than that of the divisor polynomial, the division cannot be further performed.
\therefore The value of the function f(x)=x4+9x3+35x2x+4f\left( x \right)={{x}^{4}}+9{{x}^{3}}+35{{x}^{2}}-x+4 at x=5+4ix=-5+4i is -160.

Note: The Long division method helps us to find the factors of the polynomial. The remainder and quotient of the division can be cross-checked using the formula,DividendDivisor=Quotient+RemainderDivisor\Rightarrow \dfrac{Dividend}{Divisor}=Quotient+\dfrac{\operatorname{Re}mainder}{Divisor}