Solveeit Logo

Question

Question: If \[f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}{\sin ^2}\left( {x + \dfrac{\pi }{3}} \rig...

If f(x)=sin2x + sin2(x+π3) + cosxcos(x+π3)f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}{\sin ^2}\left( {x + \dfrac{\pi }{3}} \right){\text{ }} + {\text{ }}\cos x\cos \left( {x + \dfrac{\pi }{3}} \right) and g(54)=1g\left( {\dfrac{5}{4}} \right) = 1 , then gof(x)gof\left( x \right) is equal to
(1) 1\left( 1 \right){\text{ }}1
(2) 1\left( 2 \right){\text{ }} - 1
(3) 2\left( 3 \right){\text{ 2}}
(4) 2\left( 4 \right){\text{ }} - 2

Explanation

Solution

To get the value of gof(x)gof\left( x \right) we need to simplify the function f(x)f\left( x \right) . Then apply the formulas of sin(A+B) = sinAcosB+cosAsinB\sin \left( {A + B} \right){\text{ = }}\sin A\cos B + \cos A\sin B and cos(A+B) = cosAcosBsinAsinB\cos \left( {A + B} \right){\text{ = }}\cos A\cos B - \sin A\sin B in the given equation of function. Then substitute the values of trigonometric functions when needed and solve it further. After getting the value of f(x)f\left( x \right) , find the value of gof(x)gof\left( x \right) by using the given value of g(54)g\left( {\dfrac{5}{4}} \right) .

Complete step-by-step solution:
First we have to simplify the function f(x)f\left( x \right) . So, it is given that
f(x)=sin2x + sin2(x+π3) + cosxcos(x+π3)f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}{\sin ^2}\left( {x + \dfrac{\pi }{3}} \right){\text{ }} + {\text{ }}\cos x\cos \left( {x + \dfrac{\pi }{3}} \right) ------ (i)(i)
By applying the formula of sin(A+B) = sinAcosB+cosAsinB\sin \left( {A + B} \right){\text{ = }}\sin A\cos B + \cos A\sin B in the equation (i)(i) we get
f(x)=sin2x + [sinxcosπ3+cosxsinπ3]2 + cosxcos(x+π3)f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}{\left[ {\sin x\cos \dfrac{\pi }{3} + \cos x\sin \dfrac{\pi }{3}} \right]^2}{\text{ }} + {\text{ }}\cos x\cos \left( {x + \dfrac{\pi }{3}} \right)
Value of cosπ3 = 12\cos \dfrac{\pi }{3}{\text{ = }}\dfrac{1}{2} and the value of sinπ3 = 32\sin \dfrac{\pi }{3}{\text{ = }}\dfrac{{\sqrt 3 }}{2} . Now by substituting these values in the above equation we get
f(x)=sin2x + [12sinx+32cosx]2 + cosxcos(x+π3)f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}{\left[ {\dfrac{1}{2}\sin x + \dfrac{{\sqrt 3 }}{2}\cos x} \right]^2}{\text{ }} + {\text{ }}\cos x\cos \left( {x + \dfrac{\pi }{3}} \right) -------- (ii)(ii)
Again by applying the formula, cos(A+B) = cosAcosBsinAsinB\cos \left( {A + B} \right){\text{ = }}\cos A\cos B - \sin A\sin B in the equation (ii)(ii) we get
f(x)=sin2x + [12sinx+32cosx]2 + cosx[cosxcosπ3sinxsinπ3]f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}{\left[ {\dfrac{1}{2}\sin x + \dfrac{{\sqrt 3 }}{2}\cos x} \right]^2}{\text{ }} + {\text{ }}\cos x\left[ {\cos x\cos \dfrac{\pi }{3} - \sin x\sin \dfrac{\pi }{3}} \right]
Value of cosπ3 = 12\cos \dfrac{\pi }{3}{\text{ = }}\dfrac{1}{2} and the value of sinπ3 = 32\sin \dfrac{\pi }{3}{\text{ = }}\dfrac{{\sqrt 3 }}{2} . Now by substituting these values in the above equation we get
f(x)=sin2x + [12sinx+32cosx]2 + cosx[12cosx32sinx]f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}{\left[ {\dfrac{1}{2}\sin x + \dfrac{{\sqrt 3 }}{2}\cos x} \right]^2}{\text{ }} + {\text{ }}\cos x\left[ {\dfrac{1}{2}\cos x - \dfrac{{\sqrt 3 }}{2}\sin x} \right]
By taking L.C.M inside the brackets we have
f(x)=sin2x + [sinx+3cosx2]2 + cosx[cosx3sinx2]f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}{\left[ {\dfrac{{\sin x + \sqrt 3 \cos x}}{2}} \right]^2}{\text{ }} + {\text{ }}\cos x\left[ {\dfrac{{\cos x - \sqrt 3 \sin x}}{2}} \right]
Take 14\dfrac{1}{4} and 12\dfrac{1}{2} common from the brackets,
f(x)=sin2x + 14(sinx+3cosx)2 + 12(cos2x3sinxcosx)f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}\dfrac{1}{4}{\left( {\sin x + \sqrt 3 \cos x} \right)^2}{\text{ }} + {\text{ }}\dfrac{1}{2}\left( {{{\cos }^2}x - \sqrt 3 \sin x\cos x} \right) ------ (iii)(iii)
By applying the formula, (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab in the equation (iii)(iii) we get
f(x)=sin2x + 14(sin2x+3cos2x+23sinxcosx) + 12(cos2x3sinxcosx)f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}\dfrac{1}{4}\left( {{{\sin }^2}x + 3{{\cos }^2}x + 2\sqrt 3 \sin x\cos x} \right){\text{ }} + {\text{ }}\dfrac{1}{2}\left( {{{\cos }^2}x - \sqrt 3 \sin x\cos x} \right)
Now multiply 14\dfrac{1}{4} and 12\dfrac{1}{2} with the terms inside the bracket.
f(x)=sin2x + 14sin2x+34cos2x+32sinxcosx + 12cos2x32sinxcosxf\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}\dfrac{1}{4}{\sin ^2}x + \dfrac{3}{4}{\cos ^2}x + \dfrac{{\sqrt 3 }}{2}\sin x\cos x{\text{ }} + {\text{ }}\dfrac{1}{2}{\cos ^2}x - \dfrac{{\sqrt 3 }}{2}\sin x\cos x
By adding sin2x{\sin ^2}x terms and cos2x{\cos ^2}x terms we get
f(x)=4sin2x+sin2x4+3cos2x+2cos2x4f\left( x \right) = \dfrac{{4{{\sin }^2}x + {{\sin }^2}x}}{4} + \dfrac{{3{{\cos }^2}x + 2{{\cos }^2}x}}{4}
f(x)=5sin2x4+5cos2x4f\left( x \right) = \dfrac{{5{{\sin }^2}x}}{4} + \dfrac{{5{{\cos }^2}x}}{4}
Taking 54\dfrac{5}{4} common we get
f(x)=54(sin2x+cos2x)f\left( x \right) = \dfrac{5}{4}\left( {{{\sin }^2}x + {{\cos }^2}x} \right)
And we all know that sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 . Therefore,
f(x)=54(1)f\left( x \right) = \dfrac{5}{4}\left( 1 \right)
f(x)=54\Rightarrow f\left( x \right) = \dfrac{5}{4}
According to the question we have to find the value of gof(x)gof\left( x \right) .
And here the required value of f(x)f\left( x \right) is 54\dfrac{5}{4} . So,
gof(x) = g(f(x)) = g(54)gof\left( x \right){\text{ }} = {\text{ }}g\left( {f\left( x \right)} \right){\text{ = }}g\left( {\dfrac{5}{4}} \right)
And it is given in the question that g(54) = 1g\left( {\dfrac{5}{4}} \right){\text{ = }}1 . Therefore, the value of gof(x) = 1gof\left( x \right){\text{ }} = {\text{ 1}}
Hence, the correct option is (1) 1\left( 1 \right){\text{ }}1

Note: gof(x)gof\left( x \right) means f(x)f\left( x \right) function is in g(x)g\left( x \right) function. The notation gofgof is read as “ g of f ”. gof(x)gof\left( x \right) is a composite function. To solve gof(x)gof\left( x \right) always solve f(x)f\left( x \right) first. gofgof is formed by the composition of g and f.