Solveeit Logo

Question

Question: If \[f\left( x \right){\rm{ = }}\left| {\begin{array}{*{20}{c}}{2\cos x}&1&0\\\\{x - \dfrac{\pi }{2}...

If f\left( x \right){\rm{ = }}\left| {\begin{array}{*{20}{c}}{2\cos x}&1&0\\\\{x - \dfrac{\pi }{2}}&{2\cos x}&1\\\0&1&{2\cos x}\end{array}} \right|then dfdx\dfrac{{df}}{{dx}} at x=π2{\rm{x = }}\dfrac{\pi }{2} is
A.2\B.π2C.1\D.8\begin{array}{l}A.\,\,2\\\B.\,\,\dfrac{\pi }{2}\\\C.\,\,1\\\D.\,\,8\end{array}

Explanation

Solution

Hint: First expand the determinant in a way that is easy. After expanding you’ll get a function of x. Differentiate both sides with respect to x. After differentiating, pluck the value of x as π2.\dfrac{\pi }{2}. Solve the equation completely. Then the result of that simplification is the required result.

Complete step by step solution:
Given function in the question is as follows:
f\left( x \right){\rm{ = }}\left| {\begin{array}{*{20}{c}}{2\cos x}&1&0\\\\{x - \dfrac{\pi }{2}}&{2\cos x}&1\\\0&1&{2\cos x}\end{array}} \right|
By expanding determinant by using first row, we get it as:
f\left( x \right){\rm{ = 2cosx}}\left| {\begin{array}{*{20}{c}}{2\cos x}&1\\\1&{2\cos x}\end{array}} \right| - 1\left| {\begin{array}{*{20}{c}}{x - \dfrac{\pi }{2}}&1\\\0&{2\cos x}\end{array}} \right|
By expanding determinants in above equation, we get it as:
f(x)=2cosx((2cosx)2(1)2)1((xπ2)(2cosx)0)f\left( x \right){\rm{ = 2cosx }}\left( {{{\left( {2cosx} \right)}^2} - {{\left( 1 \right)}^2}} \right) - 1\left( {\left( {x - \dfrac{\pi }{2}} \right)\left( {2cosx} \right) - 0} \right)
By simplifying both the terms, we get it as:
f(x)=((2cosx)32cosx)(2xcosxπcosx)f\left( x \right){\rm{ = }}\left( {{{\left( {2cosx} \right)}^3} - 2cosx} \right) - \left( {2xcosx - \pi cosx} \right)
By simplifying the terms and removing the bracket, we get:
f(x)=8cos3x2cosx2xcosx+πcosxf\left( x \right){\rm{ = 8co}}{{\rm{s}}^3}x - 2cosx - 2xcosx + \pi cosx
By differentiating with respect to x on both sides, we get:
ddxf(x)=ddx(8cos3x2cosx2xcosx+πcosx)\dfrac{d}{{dx}}{\rm{f}}\left( x \right) = \dfrac{d}{{dx}}\left( {8co{s^3}x - 2cosx - 2xcosx + \pi cosx} \right)
By separating the terms of above equation, we get it as:
f1(x)=8ddx(cos3x)2ddxcosx2ddx(xcosx)+πddx(cosx){f^1}\left( x \right){\rm{ = 8}}\dfrac{d}{{dx}}\left( {co{s^3}x} \right) - 2\dfrac{d}{{dx}}cosx - 2\dfrac{d}{{dx}}\left( {xcosx} \right) + \pi \dfrac{d}{{dx}}\left( {cosx} \right)
By basic knowledge of differentiation, we know
ddxxn=nxn1ddx(cosx)=sinx\dfrac{d}{{dx}}{x^n}{\rm{ = n}}{{\rm{x}}^{{\rm{n - 1}}}}{\rm{ }}\dfrac{d}{{dx}}\left( {cosx} \right){\rm{ }} = {\rm{ }} - sinx
By substituting this in our equation, we get it as:
f1(x)=83cos2x(sinx)2(sinx)2ddx(xcosx)+(sinx)\begin{array}{l}{f^1}\left( x \right){\rm{ = 83co}}{{\rm{s}}^{\rm{2}}}{\rm{x }}\left( { - sinx} \right) - 2\left( { - sinx} \right) - 2\dfrac{d}{{dx}}\left( {xcosx} \right) + \left( { - sinx} \right)\\\\\end{array}
By simplifying the above equation, we can write it as:
f1(x)=24sinxcos2x+2sinxπsinx2ddx(xcosx){f^1}\left( x \right){\rm{ = - 24sinx co}}{{\rm{s}}^{\rm{2}}}{\rm{x + 2sinx - }}\pi {\rm{sinx - 2}}\dfrac{d}{{dx}}\left( {xcosx} \right)
By knowledge of trigonometry we know u.v rule
d(u.v)=vdu+udvd\left( {u.v} \right){\rm{ = vdu + udv}}
By substituting this we can solve the last term, in form of:
f1(x)=24sinxcos2x+2sinxπsinx2xddxcosx2cosxddxx{{\rm{f}}^{\rm{1}}}\left( {\rm{x}} \right){\rm{ = - 24sinx co}}{{\rm{s}}^{\rm{2}}}{\rm{x + 2sinx - }}\pi {\rm{sinx - 2x}}\dfrac{d}{{dx}}cosx{\rm{ - 2cosx}}\dfrac{d}{{dx}}x
By substituting x=π2x{\rm{ = }}\dfrac{\pi }{2}, we know sinπ2=1cosπ2=0,sin\dfrac{\pi }{2}{\rm{ = 1 cos}}\dfrac{\pi }{2} = 0,we get
f1(x)=0+2π+2.π20{f^1}\left( x \right){\rm{ = 0 + 2 - }}\pi {\rm{ + 2}}{\rm{. }}\dfrac{\pi }{2} - 0
By cancelling the common terms, we get the value as:
f1(x=π2)=2.{f^1}\left( {x = \dfrac{\pi }{2}} \right) = 2.
Therefore, option (a) is correct.

Note: Be careful with “-“sign at differentiation of cosx{\rm{cosx}}. Generally students forget that sign and end up getting the wrong answer. While applying the u.v rule also be careful that you consider both the differentiations. In hurry students forget to consider the second term of u.v rule.