Solveeit Logo

Question

Question: If \[f\left( x \right) = \left\\{ {\dfrac{{{x^2} + \propto }}{{2\sqrt {{x^2} + 1 + B} }}} \right\\}\...

If f\left( x \right) = \left\\{ {\dfrac{{{x^2} + \propto }}{{2\sqrt {{x^2} + 1 + B} }}} \right\\}

for  x0 for  x<0  {\text{for}}\;x \geqslant 0 \\\ {\text{for}}\;x < 0 \\\

And f(12)=2f\left( {\dfrac{1}{2}} \right) = 2 is continuous at x =0, value of (,P)\left( { \propto ,P} \right) is :
A) (74,14)\left(\dfrac{7}{4}, -\dfrac{1}{4}\right)
B) (45,25)\left(4-\sqrt{5},2-\sqrt{5}\right)
C) (0,1)\left(0, -1\right)
D) (74,14)\left(\dfrac{7}{4}, \dfrac{1}{4}\right)

Explanation

Solution

The function to be continuous at a particular point like say a, then we have a condition for a, where f(x)f\left( x \right) function needs to have its left hand limit, Right hand limit and value equal to each other. Like limxa  f(x)=f(a)=  limxa+f(x) \Rightarrow \dfrac{{\lim }}{{x \to {a^ - }}}\;f\left( x \right) = f\left( a \right) = \;\dfrac{{\lim }}{{x \to {a^ + }}}f\left( x \right)

Complete step by step solution: let’s begin with the given function which is represented as
\begin{gathered} f\left( x \right) = \left\\{ {\dfrac{{{x^2} + \propto }}{{2\sqrt {{x^2} + 1 + B} }}} \right\\}\;\;\;\;\;\;\;\; \\\ \\\ \end{gathered} x0 x<0 \begin{gathered} x \geqslant 0 \\\ x < 0 \\\ \end{gathered}
As we know that from given data,f\left( {{\raise0.5ex\hbox{\scriptstyle 1} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{\scriptstyle 2}}} \right) = 2, so for this we will use the function f(x)=x2+f\left( x \right) = {x^2} + \propto because {\raise0.5ex\hbox{\scriptstyle 1} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{\scriptstyle 2}} is greater than 0
So, f(12)=14+=2f\left( {\dfrac{1}{2}} \right) = \dfrac{1}{4} + \propto = 2
    =214=74\Rightarrow \; \propto \; = 2 - \dfrac{1}{4} = \dfrac{7}{4}
Now we need to find the value of B, and the other information given is they are continuous at x = 0 for being continuous of a function the left hand limit, Right hand limit should be equal.
so  limx0f(x)=limx0+f(x)so\dfrac{{\;\lim }}{{x \to {0^ - }}}f\left( x \right) = \dfrac{{\lim }}{{x \to {0^ + }}}f\left( x \right)
limx0  (x2+)=limx0+2x2+1+B)\Rightarrow \dfrac{{\lim }}{{x \to {0^ - }}}\;\left( {{x^2} + \propto } \right) = \dfrac{{\lim }}{{x \to {0^ + }}}2\sqrt {{x^2} + 1} + B)
lim(0)2+  =202+1+B\Rightarrow \lim {\left( 0 \right)^2} + \propto \; = 2\sqrt {{0^2} + } 1 + B
2+B\propto - 2 + B
So we get,B = \; \propto - 2\;and \propto = {\raise0.5ex\hbox{\scriptstyle 7} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{\scriptstyle 4}}
\Rightarrow we get B=  2=742=14B = \; \propto - 2 = \dfrac{7}{4} - 2 = - \dfrac{1}{4}
Hence we get the value of (,B)=(\raise0.5ex7/\lower0.25ex4,\raise0.5ex1/\lower0.25ex4)\left( { \propto ,B} \right) = \left( {{\raise0.5ex\hbox{$\scriptstyle 7$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle {4,}$}}{\raise0.5ex\hbox{$\scriptstyle { - 1}$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 4$}}} \right) option A is the correct answer.

Note: we know that function to get continuous left-hand limit, Right hand limit and function value should be equal.
limxaf(x)=f(a)=limxa+f(x)\dfrac{{\lim }}{{x \to {a^ - }}}f\left( x \right) = f\left( a \right) = \dfrac{{\lim }}{{x \to {a^ + }}}f\left( x \right) Similarly, for differentiability of a function at point a is checked by
limxaf(x)=f(a)=limxa+f(x)\dfrac{{\lim }}{{x \to {a^ - }}}f\left( x \right) = f'\left( a \right) = \dfrac{{\lim }}{{x \to {a^ + }}}f'\left( x \right)