Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

If f(x)=2xsinxcos(t3)dtf\left(x\right) = \int\limits^{sin\,x}_{2x}cos\left(t^{3}\right)dt, then fxf'{x} is equal to

A

cos(sinx)cosx2cos(8x3)cos(sin\, x)cos\,x-2cos(8x^3)

B

sin(sin3x)sin2sin(8x3)sin(sin^3\, x)sin -2sin(8x^3)

C

cos(cos3x)cosx2cos(x3)cos(cos^3\, x)cos\,x-2\,cos(x^3)

D

cos(sin3x)cos(8x3)cos(sin^3\, x)-cos(8x^3)

Answer

cos(sinx)cosx2cos(8x3)cos(sin\, x)cos\,x-2cos(8x^3)

Explanation

Solution

Given, f(x)=2xsinxcost3dtf(x)=\int_{2 x}^{\sin x} \cos t^{3} d t
Using Leibnitz's rule
f(x)=cos(sin3x)ddx(sinx)f^{\prime}(x)=\cos \left(\sin ^{3} x\right) \frac{d}{d x}(\sin x)
cos(2x)3ddx(2x)-\cos (2 x)^{3} \frac{d}{d x}(2 x)
=cos(sin3x)(cosx)cos8x3(2)=\cos \left(\sin ^{3} x\right)(\cos x)-\cos 8 x^{3}(2)