Solveeit Logo

Question

Question: If \(f\left( x \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} \), then \(f\left( x \right) + f\left( {\df...

If f(x)=lnx1+xdxf\left( x \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} , then f(x)+f(1x)=f\left( x \right) + f\left( {\dfrac{1}{x}} \right) =

Explanation

Solution

Given the function. We have to find the integral of the function. First, find the value of f(x)f\left( x \right). Then find the value of f(1x)f\left( {\dfrac{1}{x}} \right) by replacing the xx by 1x\dfrac{1}{x}in the function. Then, add the functions and apply the quotient rule of logarithms to the second integral. Then, simplify the expression by canceling out the common terms. Then, replace the logarithmic function at the numerator by another variable u. Then evaluate the integral and again replace the variable by logarithmic function.

Complete step by step solution:
First, we will find the value of f(x)f\left( x \right).

f(x)=lnx1+xdxf\left( x \right) = \int {\dfrac{{lnx}}{{1 + x}}dx}

Let the function in terms of t be f(t)=lnt1+tdtf\left( t \right) = \int {\dfrac{{\ln t}}{{1 + t}}dt}

Let 1x=t\dfrac{1}{x} = t. Find the derivative of both sides, we get:

(1x)=dtdx \-1x2dx=dt \begin{gathered} \left( {\dfrac{1}{x}} \right) = \dfrac{{dt}}{{dx}} \\\ \- \dfrac{1}{{{x^2}}}dx = dt \\\ \end{gathered}

Then, find the value of f(1x)f\left( {\dfrac{1}{x}} \right) by substituting the values.

f(1x)=ln1x1+1x(1x2)dx\Rightarrow f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{\ln \dfrac{1}{x}}}{{1 + \dfrac{1}{x}}}\left( { - \dfrac{1}{{{x^2}}}} \right)dx}

Now, find the value of f(x)+f(1x)f\left( x \right) + f\left( {\dfrac{1}{x}} \right):

f(x)+f(1x)=lnx1+xdx+ln1x1+1x(1x2)dx\Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} + \int {\dfrac{{\ln \dfrac{1}{x}}}{{1 + \dfrac{1}{x}}}\left( { - \dfrac{1}{{{x^2}}}} \right)dx}

Now, apply the quotient property of logarithms to the second integration.

f(x)+f(1x)=lnx1+xdx+ln1lnx1+1x(1x2)dx\Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} + \int {\dfrac{{\ln 1 - \ln x}}{{1 + \dfrac{1}{x}}}\left( { - \dfrac{1}{{{x^2}}}} \right)dx}

Substitute ln1=0\ln 1 = 0 into the expression, we get:

f(x)+f(1x)=lnx1+xdx+0lnx1+1x(1x2)dx\Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} + \int {\dfrac{{0 - \ln x}}{{1 + \dfrac{1}{x}}}\left( { - \dfrac{1}{{{x^2}}}} \right)dx}

f(x)+f(1x)=lnx1+xdxxlnx1+x(1x2)dx\Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} - \int {\dfrac{{x\ln x}}{{1 + x}}\left( {\dfrac{{ - 1}}{{{x^2}}}} \right)dx}

Simplify the expression, we get:

f(x)+f(1x)=lnx1+xdx+lnxx(1+x)(dx)\Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} + \int {\dfrac{{\ln x}}{{x\left( {1 + x} \right)}}\left( {dx} \right)}

Now, apply the formula 1x(1+x)=1x1x+1\dfrac{1}{{x\left( {1 + x} \right)}} = \dfrac{1}{x} - \dfrac{1}{{x + 1}} to the expression.

f(x)+f(1x)=lnx1+xdx+lnxxdxlnx1+xdx\Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} + \int {\dfrac{{\ln x}}{x}dx} - \int {\dfrac{{\ln x}}{{1 + x}}dx}

We will cancel out the common terms.

f(x)+f(1x)=lnxxdx\Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{\ln x}}{x}dx}

Substitute u=lnxu = \ln x into the integral and differentiate both sides, we get:
dudx=1x\dfrac{{du}}{{dx}} = \dfrac{1}{x}

Multiply dxdx on both sides, we get:

du=dxxdu = \dfrac{{dx}}{x}

Replace lnx\ln x by uu and dxx\dfrac{{dx}}{x} by dudu into the integral.

f(x)+f(1x)=udu\Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {udu}

Apply the power rule of integration, we get:

f(x)+f(1x)=u22+C \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \dfrac{{{u^2}}}{2} + C

Replace uu by lnx\ln x, we get:

f(x)+f(1x)=12(lnx)2+C \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \dfrac{1}{2}{\left( {\ln x} \right)^2} + C.

Final answer: Hence the value of f(x)+f(1x)f\left( x \right) + f\left( {\dfrac{1}{x}} \right) is 12(lnx)2+C\dfrac{1}{2}{\left( {\ln x} \right)^2} + C.

Note: In such types of questions the quotient rule of logarithms can be applied. The quotient rule is given by ln(xy)=lnxlny\ln \left( {\dfrac{x}{y}} \right) = \ln x - \ln y. Also, the derivative of ddx(1x)\dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right) is lnx\ln x. The power rule of integration is given by xadx=xa+1a+1\int {{x^a}dx} = \dfrac{{{x^{a + 1}}}}{{a + 1}}. Students may forget to add the constant of integration after solving the integral.