Solveeit Logo

Question

Question: If \(f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)\) is divisible by \({x^2...

If f(x)=g(x3)+xh(x3)f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right) is divisible by x2x+1{x^2} - x + 1 then which of the following is not true
A. Both g(x)g\left( x \right) and h(x)h\left( x \right) are divisible by x+1x + 1
B. g(x)g\left( x \right) is divisible by x+1x + 1
C. h(x)h\left( x \right) is divisible by x+1x + 1
D. The statement (A) is not true

Explanation

Solution

First, we shall analyze the given information. It is given that the given equation f(x)=g(x3)+xh(x3)f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right)is divisible by x2x+1{x^2} - x + 1.
Here, we need to calculate the roots x2x+1=0{x^2} - x + 1 = 0.
And we shall apply the roots in place of xx in the given equation.
Formula to be used:
The quadratic formula of the form ax2+bx+c=0a{x^2} + bx + c = 0 is as follows.
x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}

Complete step by step answer:
The given equation is f(x)=g(x3)+xh(x3)f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right).
It is given that the given equation f(x)=g(x3)+xh(x3)f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right) is divisible by x2x+1{x^2} - x + 1.
We shall calculate the roots of x2x+1=0{x^2} - x + 1 = 0
Here,
a=1a = 1,
b=1b = - 1,
c=1c = 1
Applying these values in the quadratic formula, we have
x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
x=(1)±(1)24×1×12×1x = \dfrac{{ - \left( { - 1} \right) \pm \sqrt {{{\left( { - 1} \right)}^2} - 4 \times 1 \times 1} }}{{2 \times 1}}
x=1±142\Rightarrow x = \dfrac{{1 \pm \sqrt {1 - 4} }}{2}
x=1±32\Rightarrow x = \dfrac{{1 \pm \sqrt { - 3} }}{2}
x=1±i32\Rightarrow x = \dfrac{{1 \pm i\sqrt 3 }}{2}
Where ii is known as imaginary number.
We know that the value of the roots ω\omega and ω2{\omega ^2} are1±i32\dfrac{{ - 1 \pm i\sqrt 3 }}{2} .
Here, we got the roots as x=1±i32x = \dfrac{{1 \pm i\sqrt 3 }}{2} which can also be written as ω- \omega and ω2 - {\omega ^2}
Hence, the roots of x2x+1=0{x^2} - x + 1 = 0 are ω- \omega and ω2 - {\omega ^2}.
It is given that the given equation f(x)=g(x3)+xh(x3)f\left( x \right) = g\left( {{x^3}} \right) + xh\left( {{x^3}} \right) is divisible by x2x+1{x^2} - x + 1.
Therefore, ω- \omega and ω2 - {\omega ^2}are the factors of f(x)f(x)
So, we need to replace xx by ω- \omega and ω2 - {\omega ^2} in the given equation.
f(ω)=g(ω3)ωh(ω3)f\left( { - \omega } \right) = g\left( { - {\omega ^3}} \right) - \omega h\left( { - {\omega ^3}} \right)
f(ω)=g(ω3)ωh(ω3)=0\Rightarrow f\left( { - \omega } \right) = g\left( { - {\omega ^3}} \right) - \omega h\left( { - {\omega ^3}} \right) = 0
We know that the value of ω3=1{\omega ^3} = 1
g(1)ωh(1)=0\Rightarrow g\left( { - 1} \right) - \omega h\left( { - 1} \right) = 0 ……….(1)\left( 1 \right)
Similarly,
f(ω2)=g((ω2)3)ω2h((ω2)3)f\left( { - {\omega ^2}} \right) = g\left( {{{\left( { - {\omega ^2}} \right)}^3}} \right) - {\omega ^2}h\left( {{{\left( { - {\omega ^2}} \right)}^3}} \right)
f(ω2)=g(ω6)ω2h(ω6)=0\Rightarrow f\left( { - {\omega ^2}} \right) = g\left( { - {\omega ^6}} \right) - {\omega ^2}h\left( { - {\omega ^6}} \right) = 0
We know that the value of ω6=1{\omega ^6} = 1
g(1)ω2h(1)=0\Rightarrow g\left( { - 1} \right) - {\omega ^2}h\left( { - 1} \right) = 0 ……………..(2)\left( 2 \right)
Now, we shall add (1)\left( 1 \right)and (2)\left( 2 \right).
g(1)ωh(1)+g(1)ω2h(1)=0\Rightarrow g\left( { - 1} \right) - \omega h\left( { - 1} \right) + g\left( { - 1} \right) - {\omega ^2}h\left( { - 1} \right) = 0
2g(1)(ω+ω2)h(1)=0\Rightarrow 2g\left( { - 1} \right) - \left( {\omega + {\omega ^2}} \right)h\left( { - 1} \right) = 0
We know that ω+ω2=1\omega + {\omega ^2} = - 1 (1+ω+ω2=0)(1 + \omega + {\omega ^2} = 0)
2g(1)(1)h(1)=0\Rightarrow 2g\left( { - 1} \right) - \left( { - 1} \right)h\left( { - 1} \right) = 0
2g(1)+h(1)=0\Rightarrow 2g\left( { - 1} \right) + h\left( { - 1} \right) = 0
h(1)=2g(1)\Rightarrow h\left( { - 1} \right) = - 2g\left( { - 1} \right) …………..(3)\left( 3 \right)
We need to substitute the above result in (1)\left( 1 \right)

g(1)ωh(1)=0 g(1)ω×2g(1)=0  g\left( { - 1} \right) - \omega h\left( { - 1} \right) = 0 \\\ \Rightarrow g\left( { - 1} \right) - \omega \times - 2g\left( { - 1} \right) = 0 \\\

g(1)+2ωg(1)=0 \Rightarrow g\left( { - 1} \right) + 2\omega g\left( { - 1} \right) = 0
(1+2ω)g(1)=0\Rightarrow \left( {1 + 2\omega } \right)g\left( { - 1} \right) = 0
g(1)=0\Rightarrow g\left( { - 1} \right) = 0
Therefore, (x+1)\left( {x + 1} \right) is a factor of g(x)g\left( x \right) . Hence, option B is correct.
Now, we shall substitute g(1)=0g\left( { - 1} \right) = 0 in (3)\left( 3 \right)

h(1)=2g(1) h(1)=2×0  h\left( { - 1} \right) = - 2g\left( { - 1} \right) \\\ \Rightarrow h\left( { - 1} \right) = - 2 \times 0 \\\

h(1)=0 \Rightarrow h\left( { - 1} \right) = 0
Therefore, (x+1)\left( {x + 1} \right) is a factor of h(x)h\left( x \right) . Hence, option C is true.
Also, option A is true.

So, the correct answer is “Option D”.

Note: We know that the value of the roots ω\omega and ω2{\omega ^2} are 1±i32\dfrac{{ - 1 \pm i\sqrt 3 }}{2} . The sum of the cube root of unity is zero (i.e.) 1+ω+ω2=01 + \omega + {\omega ^2} = 0. Also, it is known that ω3=1{\omega ^3} = 1. Generally, we express the square root of a negative number in terms of an imaginary number. So, here we replaced i=1i = - 1