Question
Mathematics Question on Application of derivatives
If f(x)=x2+1x2−1,x∈R then the minimum value of f is
A
0
B
44656
C
44625
D
-1
Answer
-1
Explanation
Solution
We have, f(x)=x2+1x2−1
Maximum or minimum value point is given by f′(x)=0
f′(x)=(x2+1)2(x2+1)2x−(x2−1)2x=0
⇒2x(x2+1−x2+1)=0
⇒4x=0⇒x=0
Now, f′′(x)=dxd((x2+1)22x3+2x−2x3+2x)
=dxd((x2+1)24x)
f′′(x)=(x2+1)4(x2+1)24−4x×2(x2+1)×2x
=(x2+1)44(x2+1)2−16x2(x2+1)
=(x2+1)44(x2+1)(x2+1−4x2)=(x2+1)34(−3x2+1)
Now f′′(0)=14>0
∴x=0 is a minimum point and minimum value of f is given by f(0)=0+10−1=−1