Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

If f(x)=2xcosx2+xcosxf\left(x\right) = \frac{2- x\cos x}{2+x \cos x} and g(x)=logex.,(x>0)g\left(x\right) =\log_{e}x ., \left(x>0\right) then the value of integral π4π4g(f(x))dx\int\limits^{\frac{\pi}{4}}_{-\frac{\pi}{4}} g\left(f\left(x\right)\right)dx is :

A

loge3\log_e 3

B

loge2\log_e 2

C

logee\log_e e

D

loge1\log_e 1

Answer

loge1\log_e 1

Explanation

Solution

g(f(x))=n(f(x))=n(2x.cosx2+x.cosx)g\left(f\left(x\right)\right) =\ell n\left(f\left(x\right)\right) =\ell n\left(\frac{2-x.\cos x}{2+x.\cos x}\right)
I=π4π4n(2x.cosx2+xcosx)dx\therefore I = \int^{\frac{\pi}{4}}_{-\frac{\pi}{4}} \ell n\left(\frac{2-x.\cos x}{2+x\cos x}\right)dx
=0π4(n(2xcosx2+x.cosx)+n(2+x.cosx2x.cosx))dx= \int^{\frac{\pi}{4}}_{0} \left(\ell n \left(\frac{2-x\cos x}{2+x.\cos x}\right) + \ell n\left(\frac{2+x.\cos x}{2-x.\cos x}\right)\right)dx
=0π2(0)dx=0=loge(1)= \int^{\frac{\pi}{2}}_{0} \left(0\right)dx =0 =\log_{e} \left(1\right)