Solveeit Logo

Question

Question: If \(f\left( x \right).f\left( y \right) = f\left( {x + y} \right)\) , \(\forall \) real x, y and \(...

If f(x).f(y)=f(x+y)f\left( x \right).f\left( y \right) = f\left( {x + y} \right) , \forall real x, y and f(1)=12f\left( 1 \right) = \dfrac{1}{2} , then r=0f(r)=\sum\limits_{r = 0}^\infty {f\left( r \right) = } ?

Explanation

Solution

We can find the f(0)f\left( 0 \right) using the given equation by substituting x=0x = 0 and y=1y = 1 . Similarly, we can find the values of f(2)f\left( 2 \right) , f(3)f\left( 3 \right) , etc. Then we can write the summation of these values and it forms a geometric progression. Then we can find the value of the required summation by finding the sum of the infinite GP.

Complete step-by-step answer:
We have the relation f(x).f(y)=f(x+y)f\left( x \right).f\left( y \right) = f\left( {x + y} \right) … (1)
Let us take x=0x = 0 and y=1y = 1 ,
f(0).f(1)=f(0+1)\Rightarrow f\left( 0 \right).f\left( 1 \right) = f\left( {0 + 1} \right)
On dividing throughout with f(1)f\left( 1 \right) , we get,
f(0)=f(1)f(1)\Rightarrow f\left( 0 \right) = \dfrac{{f\left( 1 \right)}}{{f\left( 1 \right)}}
f(0)=1\Rightarrow f\left( 0 \right) = 1
Now we can substitute x=1x = 1 and y=1y = 1 ,in equation (1)
f(1).f(1)=f(1+1)\Rightarrow f\left( 1 \right).f\left( 1 \right) = f\left( {1 + 1} \right)
It is given that f(1)=12f\left( 1 \right) = \dfrac{1}{2} , so we get,
f(2)=12×12\Rightarrow f\left( 2 \right) = \dfrac{1}{2} \times \dfrac{1}{2}
f(2)=(12)2\Rightarrow f\left( 2 \right) = {\left( {\dfrac{1}{2}} \right)^2}
Now we can substitute x=2x = 2 and y=1y = 1 ,in equation (1)
f(2).f(1)=f(2+1)\Rightarrow f\left( 2 \right).f\left( 1 \right) = f\left( {2 + 1} \right)
It is given that f(1)=12f\left( 1 \right) = \dfrac{1}{2} , and we have f(2)=(12)2f\left( 2 \right) = {\left( {\dfrac{1}{2}} \right)^2} so we get,
f(3)=(12)2×12\Rightarrow f\left( 3 \right) = {\left( {\dfrac{1}{2}} \right)^2} \times \dfrac{1}{2}
f(3)=(12)3\Rightarrow f\left( 3 \right) = {\left( {\dfrac{1}{2}} \right)^3}
So generally, we can write,
f(n)=(12)n\Rightarrow f\left( n \right) = {\left( {\dfrac{1}{2}} \right)^n} for every natural number n.
Now we can write the summation,
Let S=r=0f(r)S = \sum\limits_{r = 0}^\infty {f\left( r \right)}
On expanding the summation, we get,
S=f(0)+f(1)+f(2)+....+f(n)\Rightarrow S = f\left( 0 \right) + f\left( 1 \right) + f\left( 2 \right) + .... + f\left( n \right)
From the above results, we can substitute the value,
S=1+12+(12)2+(12)3+....+(12)n\Rightarrow S = 1 + \dfrac{1}{2} + {\left( {\dfrac{1}{2}} \right)^2} + {\left( {\dfrac{1}{2}} \right)^3} + .... + {\left( {\dfrac{1}{2}} \right)^n}
Now this forms an infinite geometric series with a=1 and common ratio d=12d = \dfrac{1}{2} . We know that for an infinite geometric series, the sum is given by the formula S=a1r{S_\infty } = \dfrac{a}{{1 - r}} .
S=a1r\Rightarrow S = \dfrac{a}{{1 - r}}
On substituting the values of a and d, we get,
S=1112\Rightarrow S = \dfrac{1}{{1 - \dfrac{1}{2}}}
On simplification, we get,
S=221\Rightarrow S = \dfrac{2}{{2 - 1}}
S=2\Rightarrow S = 2
Therefore, the required summation r=0f(r)=2\sum\limits_{r = 0}^\infty {f\left( r \right)} = 2.

Note: We used the concept of functions to solve the problem. As the summation has r=0, we must find the value of the function at 0. We must find the values of the function for the 1st few natural numbers to understand the trend and formulate a general equation for f(n)f\left( n \right) . For expanding the summation, we give the values 0 to n in the place of r. We know that geometric progression is a series where any term is given by multiplying a common ratio with the previous term. As the GP is an infinite GP and the common ratio is less than zero we used the equation S=a1r{S_\infty } = \dfrac{a}{{1 - r}} to find its sum.