Solveeit Logo

Question

Question: If \(f\left( x \right) + f\left( y \right) + f\left( {xy} \right) = 2 + f\left( x \right)f\left( y \...

If f(x)+f(y)+f(xy)=2+f(x)f(y)x,yRf\left( x \right) + f\left( y \right) + f\left( {xy} \right) = 2 + f\left( x \right)f\left( y \right)\,\,\forall x,y \in R and f(x)f\left( x \right) is polynomial with f(4)=17f\left( 4 \right) = 17. Find f(5)13\dfrac{{f\left( 5 \right)}}{{13}}.

Explanation

Solution

First, substitute y=1xy = \dfrac{1}{x} and then substitute x=1 which give two values of f(1). After that put y=1 which gives the value of f(1)=2. Substitute the value of f(1) in the equation which will give the function f(x)=±xn+1f\left( x \right) = \pm {x^n} + 1. Now substitute the value f(4)=17 to find the exact function. After that calculate the value of f(5)13\dfrac{{f\left( 5 \right)}}{{13}}.

Complete step-by-step answer:
Given:- f(x)+f(y)+f(xy)=2+f(x)f(y)f\left( x \right) + f\left( y \right) + f\left( {xy} \right) = 2 + f\left( x \right)f\left( y \right) …..(1)
f(4)=17f\left( 4 \right) = 17 .
Substitute y=1xy = \dfrac{1}{x},
\Rightarrow f(x)+f(1x)+f(1)=2+f(x)f(1x)f\left( x \right) + f\left( {\dfrac{1}{x}} \right) + f\left( 1 \right) = 2 + f\left( x \right)f\left( {\dfrac{1}{x}} \right) ….(2)
Now substitute x=1 in the above equation,
\Rightarrow f(1)+f(1)+f(1)=2+f(1)f(1)f\left( 1 \right) + f\left( 1 \right) + f\left( 1 \right) = 2 + f\left( 1 \right)f\left( 1 \right)
Move all terms to one side,
\Rightarrow f2(1)3f(1)+2=0{f^2}\left( 1 \right) - 3f\left( 1 \right) + 2 = 0
Resolve the equation,
\Rightarrow f2(1)2f(1)f(1)+2=0{f^2}\left( 1 \right) - 2f\left( 1 \right) - f\left( 1 \right) + 2 = 0
Take out common factors,
\Rightarrow f(1)[f(1)2]1[f(1)2]=0f\left( 1 \right)\left[ {f\left( 1 \right) - 2} \right] - 1\left[ {f\left( 1 \right) - 2} \right] = 0
Take the common factors,
\Rightarrow [f(1)2][f(1)1]=0\left[ {f\left( 1 \right) - 2} \right]\left[ {f\left( 1 \right) - 1} \right] = 0
Equate f(1)2f\left( 1 \right) - 2 to 0,
\Rightarrow f(1)2=0f\left( 1 \right) - 2 = 0
Move 2 to other sides,
\Rightarrow f(1)=2f\left( 1 \right) = 2
Now, equate f(1)1f\left( 1 \right) - 1 to 0,
\Rightarrow f(1)1=0f\left( 1 \right) - 1 = 0
Move 1 to other sides,
\Rightarrow f(1)=1f\left( 1 \right) = 1
Thus, f(1)=1,2f\left( 1 \right) = 1,2
Now, put y=1 in equation (1),
\Rightarrow f(x)+f(1)+f(x)=2+f(x)f(1)f\left( x \right) + f\left( 1 \right) + f\left( x \right) = 2 + f\left( x \right)f\left( 1 \right)
Add the like terms,
\Rightarrow 2f(x)+f(1)=2+f(x)f(1)2f\left( x \right) + f\left( 1 \right) = 2 + f\left( x \right)f\left( 1 \right)
Move all terms to one side,
\Rightarrow f(x)f(1)2f(x)f(1)+2=0f\left( x \right)f\left( 1 \right) - 2f\left( x \right) - f\left( 1 \right) + 2 = 0
Take out common factors,
\Rightarrow f(x)[f(1)2]1[f(1)2]=0f\left( x \right)\left[ {f\left( 1 \right) - 2} \right] - 1\left[ {f\left( 1 \right) - 2} \right] = 0
Take the common factors,
\Rightarrow [f(1)2][f(x)1]=0\left[ {f\left( 1 \right) - 2} \right]\left[ {f\left( x \right) - 1} \right] = 0
Equate f(1)2f\left( 1 \right) - 2 to 0,
\Rightarrow f(1)2=0f\left( 1 \right) - 2 = 0
Move 2 to other sides,
\Rightarrow f(1)=2f\left( 1 \right) = 2
Now, equate f(x)1f\left( x \right) - 1 to 0,
\Rightarrow f(x)1=0f\left( x \right) - 1 = 0
Move 1 to other sides,
\Rightarrow f(x)=1f\left( x \right) = 1
It shows that the function f(x)f\left( x \right) is constant. But, f(4)=17f\left( 4 \right) = 17.
So, it is not possible.
Thus, f(1)=2f\left( 1 \right) = 2.
Now, substitute the value of f(1)f\left( 1 \right) in equation (2),
f(x)+f(1x)+2=2+f(x)+f(1x)f\left( x \right) + f\left( {\dfrac{1}{x}} \right) + 2 = 2 + f\left( x \right) + f\left( {\dfrac{1}{x}} \right)
Cancel out 2 from both sides,
\Rightarrow f(x)+f(1x)=f(x)+f(1x)f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = f\left( x \right) + f\left( {\dfrac{1}{x}} \right)
When the equation is in this form. Then,
\Rightarrow f(x)=±xn+1f\left( x \right) = \pm {x^n} + 1 …..(3)
As f(4)=17f\left( 4 \right) = 17. Put f(x)=17f\left( x \right) = 17 and x=4,
17=±4n+117 = \pm {4^n} + 1
Move 1 to the other side and subtract from 17.
\Rightarrow ±4n=16 \pm {4^n} = 16
Since, the negative sign is not possible. So, neglect the negative sign,
\Rightarrow 4n=42{4^n} = {4^2}
Since, the base is the same. So, equate the power,
\Rightarrow n=2n = 2
Substitute the value of n in equation (3),
\Rightarrow f(x)=x2+1f\left( x \right) = {x^2} + 1
Now, find f(5)13\dfrac{{f\left( 5 \right)}}{{13}}.
\Rightarrow f(5)13=52+113\dfrac{{f\left( 5 \right)}}{{13}} = \dfrac{{{5^2} + 1}}{{13}}
Square 5 and add 1 in the numerator,
\Rightarrow f(5)13=2613\dfrac{{f\left( 5 \right)}}{{13}} = \dfrac{{26}}{{13}}
Cancel out common factors from numerator and denominator,
\Rightarrow f(5)13=2\dfrac{{f\left( 5 \right)}}{{13}} = 2.

Hence, the value of f(5)13\dfrac{{f\left( 5 \right)}}{{13}} is 2.

Note: The students might make mistake if they are unaware of the solution to the equation f(x)+f(1x)=f(x)+f(1x)f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = f\left( x \right) + f\left( {\dfrac{1}{x}} \right).
A function is a relation which describes that there should be only one output for each input. We can say that a special kind of relation (a set of ordered pairs) which follows a rule i.e every X-value should be associated with only one y-value is called a function.