Solveeit Logo

Question

Question: If \(f\left( x \right)={{e}^{x}}\) and \(g\left( x \right)=\log \left( {{e}^{x}} \right)\) then whic...

If f(x)=exf\left( x \right)={{e}^{x}} and g(x)=log(ex)g\left( x \right)=\log \left( {{e}^{x}} \right) then which of the following is correct?
(a) f(g(x))g(f(x))f\left( g\left( x \right) \right)\ne g\left( f\left( x \right) \right)
(b) f(g(x))=g(f(x))f\left( g\left( x \right) \right)=g\left( f\left( x \right) \right)
(c) f(g(x))+g(f(x))=0f\left( g\left( x \right) \right)+g\left( f\left( x \right) \right)=0
(d) f(g(x))g(f(x))=1f\left( g\left( x \right) \right)-g\left( f\left( x \right) \right)=1

Explanation

Solution

Simplify the function g(x)=log(ex)g\left( x \right)=\log \left( {{e}^{x}} \right) by using the formulas log(am)=mloga\log \left( {{a}^{m}} \right)=m\log a and loge=1\log e=1. Assume the base of the log equal to e, i.e. it is a natural log. Now, find the composite functions f(g(x))f\left( g\left( x \right) \right) and g(f(x))g\left( f\left( x \right) \right) one by one. To find f(g(x))f\left( g\left( x \right) \right) substitute the value of g(x)g\left( x \right) in place of xx in the function f(x)f\left( x \right) and similarly find g(f(x))g\left( f\left( x \right) \right) by substituting f(x)f\left( x \right) in place of xx in the function g(x)g\left( x \right). Check for the correct option.

Complete step by step solution:
Here we have been provided with the functions f(x)=exf\left( x \right)={{e}^{x}} and g(x)=log(ex)g\left( x \right)=\log \left( {{e}^{x}} \right), we are asked to choose the correct option regarding the composite functions f(g(x))f\left( g\left( x \right) \right) and g(f(x))g\left( f\left( x \right) \right). First let us simplify g(x)=log(ex)g\left( x \right)=\log \left( {{e}^{x}} \right) further.
Now, we haven’t been provided with any base value of the log in the function g(x)g\left( x \right), so in mathematics we assume the base value in such a case equal to e. In other words we can say that the given log is assumed to be a natural log. Using the formulas log(am)=mloga\log \left( {{a}^{m}} \right)=m\log a and loge=1\log e=1 we get,
g(x)=xlog(e) g(x)=x \begin{aligned} & \Rightarrow g\left( x \right)=x\log \left( e \right) \\\ & \Rightarrow g\left( x \right)=x \\\ \end{aligned}
The composite function f(g(x))f\left( g\left( x \right) \right) can be obtained by substituting g(x)g\left( x \right) in place of xx in the function f(x)=exf\left( x \right)={{e}^{x}}, so we get,
f(g(x))=f(x) f(g(x))=ex \begin{aligned} & \Rightarrow f\left( g\left( x \right) \right)=f\left( x \right) \\\ & \Rightarrow f\left( g\left( x \right) \right)={{e}^{x}} \\\ \end{aligned}
Similarly, the composite function g(f(x))g\left( f\left( x \right) \right) can be obtained by substituting f(x)f\left( x \right) in place of xx in the function g(x)=xg\left( x \right)=x, so we get,
g(f(x))=g(ex) g(f(x))=ex \begin{aligned} & \Rightarrow g\left( f\left( x \right) \right)=g\left( {{e}^{x}} \right) \\\ & \Rightarrow g\left( f\left( x \right) \right)={{e}^{x}} \\\ \end{aligned}
Clearly we can see that the two composite functions f(g(x))f\left( g\left( x \right) \right) and g(f(x))g\left( f\left( x \right) \right) are equal.
f(g(x))=g(f(x))\therefore f\left( g\left( x \right) \right)=g\left( f\left( x \right) \right)
Hence, option (b) is the correct answer.

Note: Even if we assume the base of the log equal to 10, i.e. the log is a assumed to be a common log, we are going to get the same result but then the composite functions will become f(g(x))=g(f(x))=exlog10ef\left( g\left( x \right) \right)=g\left( f\left( x \right) \right)={{e}^{x}}{{\log }_{10}}e. However, always remember that if no base value is present then assume the given log as a natural log. Remember the properties of logarithms for simplifying the functions.