Solveeit Logo

Question

Question: If \[f\left( x \right)=\dfrac{x\left( x+1 \right)}{2}\] is given, then determine the expression for ...

If f(x)=x(x+1)2f\left( x \right)=\dfrac{x\left( x+1 \right)}{2} is given, then determine the expression for the value of f(x+2)f\left( x+2 \right).
(a) f(x)+f(2)f\left( x \right)+f\left( 2 \right)
(b) (x+2)f(x)\left( x+2 \right)f\left( x \right)
(c) x(x+2)f(x)x\left( x+2 \right)f\left( x \right)
(d) xf(x)x+2\dfrac{xf\left( x \right)}{x+2}
(e) (x+2)f(x+1)x\dfrac{\left( x+2 \right)f\left( x+1 \right)}{x}

Explanation

Solution

In this question, We are given with the function f(x)=x(x1)2f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}. We will then evaluate the expression of f(x+2)f\left( x+2 \right) by xx by x+2x+2 in f(x)=x(x1)2f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}. And then we will check which of the given options satisfy the obtained expression of f(x+2)f\left( x+2 \right).

Complete step-by-step answer:
The function f(x)f\left( x \right) is given by f(x)=x(x1)2f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}.
In order to find the expression of f(x+2)f\left( x+2 \right) in terms of some value of the function f(x)f\left( x \right), we will first evaluate the value of f(x+2)f\left( x+2 \right).
Now replacing xx by x+2x+2 in the expression f(x)=x(x1)2f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}, we get
f(x+2)=(x+2)((x+2)1)2f\left( x+2 \right)=\dfrac{\left( x+2 \right)\left( \left( x+2 \right)-1 \right)}{2}
On simplifying the above expression for f(x+2)f\left( x+2 \right), we get

& f\left( x+2 \right)=\dfrac{\left( x+2 \right)\left( x+2-1 \right)}{2} \\\ & =\dfrac{\left( x+2 \right)\left( x+1 \right)}{2} \end{aligned}$$ Thus we have $$f\left( x+2 \right)=\dfrac{\left( x+2 \right)\left( x+1 \right)}{2}$$ Now if we multiply and divide the left hand side of the above equation with $$x$$, then we will get $$f\left( x+2 \right)=\dfrac{\left( x+2 \right)\left( x+1 \right)\left( x \right)}{2x}...........(1)$$ Now we can check which of the following options will satisfy equation (1) Let if possible $$f\left( x+2 \right)=f\left( x \right)+f\left( 2 \right)$$. Now the function $$f(x)$$ is given by $$f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}$$. Using this in the above expression for $$f\left( x+2 \right)$$, we get $$\begin{aligned} & f\left( x+2 \right)=f\left( x \right)+f\left( 2 \right) \\\ & =\dfrac{x\left( x-1 \right)}{2}+\dfrac{2\left( 2-1 \right)}{2} \\\ & =\dfrac{x\left( x-1 \right)}{2}+1 \\\ & =\dfrac{x\left( x-1 \right)+2}{2} \end{aligned}$$ Since in this case the value of $$f\left( x+2 \right)$$ cannot be expressed as the value obtained in the equation (1), hence option (a) is wrong. Now let if possible $$f\left( x+2 \right)=\left( x+2 \right)f\left( x \right)$$. Then again using $$f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}$$, we get $$\begin{aligned} & f\left( x+2 \right)=\left( x+2 \right)f\left( x \right) \\\ & =\left( x+2 \right)\left( \dfrac{x\left( x-1 \right)}{2} \right) \\\ & =\dfrac{x\left( x-1 \right)\left( x+2 \right)}{2} \end{aligned}$$ which is again not equal to the value obtained in the equation (1), hence option (b) is wrong. Now let if possible $$f\left( x+2 \right)=x\left( x+2 \right)f\left( x \right)$$. Then again using $$f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}$$, we get $$\begin{aligned} & f\left( x+2 \right)=x\left( x+2 \right)f\left( x \right) \\\ & =x\left( x+2 \right)\left( \dfrac{x\left( x-1 \right)}{2} \right) \\\ & =\dfrac{{{x}^{2}}\left( x-1 \right)\left( x+2 \right)}{2} \end{aligned}$$ which is again cannot be expressed as the value obtained in the equation (1), hence option (c) is wrong. Now let if possible $$f\left( x+2 \right)=\dfrac{xf\left( x \right)}{\left( x+2 \right)}$$. Then again using $$f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}$$, we get $$\begin{aligned} & f\left( x+2 \right)=\dfrac{xf\left( x \right)}{\left( x+2 \right)} \\\ & =\left( \dfrac{\left( x \right)}{x+2} \right)\left( \dfrac{x\left( x-1 \right)}{2} \right) \\\ & =\dfrac{{{x}^{2}}\left( x-1 \right)}{2\left( x+2 \right)} \end{aligned}$$ which is again not equal to the value obtained in the equation (1), hence option (d) is wrong. Now let if possible $$f\left( x+2 \right)=\dfrac{\left( x+2 \right)f\left( x+1 \right)}{x}$$. Then again using $$f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}$$, we get $$\begin{aligned} & f\left( x+2 \right)=\dfrac{\left( x+2 \right)f\left( x+1 \right)}{x} \\\ & =\left( \dfrac{x+2}{x} \right)\left( \dfrac{\left( x+1 \right)\left( \left( x+1 \right)-1 \right)}{2} \right) \\\ & =\dfrac{\left( x+2 \right)\left( x+1 \right)x}{2x} \end{aligned}$$ which is equal to the value obtained in the equation (1). Hence we have that $$f\left( x+2 \right)=\dfrac{\left( x+2 \right)f\left( x+1 \right)}{x}$$. **So, the correct answer is “Option (e)”.** **Note:** In this problem, we can also evaluate the expression for $$f\left( x+2 \right)$$ obtained in equation (1) and simplify it and express it in terms of some value of the function $$f(x)$$.