Question
Question: If \[f\left( x \right)=\dfrac{\cos x}{{{\left( 1-\sin x \right)}^{\dfrac{1}{3}}}}\], then A. \[\u...
If f(x)=(1−sinx)31cosx, then
A. x→2πlimf(x)=−∞
B. x→2πlimf(x)=1
C. x→2πlimf(x)=∞
D. None of these
Explanation
Solution
Hint : We first change the variable with the relation x=h+2π. We also change the limit and find the trigonometric values. Then we use the submultiple formulas like (1−cosh)=2sin22h and sin(h)=2sin2hcos2h. We find the limit value placing the h=0.
Complete step-by-step answer :
We first change the variable for the limit x→2πlimf(x) with f(x)=(1−sinx)31cosx.
As x→2π, we take h=x−2π→0. We get x=h+2π
So, x→2πlim(1−sinx)31cosx=h→0lim(1−sin(h+2π))31cos(h+2π).
We have cos(h+2π)=−sin(h);sin(h+2π)=cos(h).
So, x→2πlimf(x)=h→0lim(1−cosh)31−sin(h).
We know that (1−cosh)=2sin22h and sin(h)=2sin2hcos2h.