Solveeit Logo

Question

Question: If \[f\left( x \right)=\dfrac{\cos x}{{{\left( 1-\sin x \right)}^{\dfrac{1}{3}}}}\], then A. \[\u...

If f(x)=cosx(1sinx)13f\left( x \right)=\dfrac{\cos x}{{{\left( 1-\sin x \right)}^{\dfrac{1}{3}}}}, then
A. limxπ2f(x)=\underset{x\to \dfrac{\pi }{2}}{\mathop{\lim }}\,f\left( x \right)=-\infty
B. limxπ2f(x)=1\underset{x\to \dfrac{\pi }{2}}{\mathop{\lim }}\,f\left( x \right)=1
C. limxπ2f(x)=\underset{x\to \dfrac{\pi }{2}}{\mathop{\lim }}\,f\left( x \right)=\infty
D. None of these

Explanation

Solution

Hint : We first change the variable with the relation x=h+π2x=h+\dfrac{\pi }{2}. We also change the limit and find the trigonometric values. Then we use the submultiple formulas like (1cosh)=2sin2h2\left( 1-\cosh \right)=2{{\sin }^{2}}\dfrac{h}{2} and sin(h)=2sinh2cosh2\sin \left( h \right)=2\sin \dfrac{h}{2}\cos \dfrac{h}{2}. We find the limit value placing the h=0h=0.

Complete step-by-step answer :
We first change the variable for the limit limxπ2f(x)\underset{x\to \dfrac{\pi }{2}}{\mathop{\lim }}\,f\left( x \right) with f(x)=cosx(1sinx)13f\left( x \right)=\dfrac{\cos x}{{{\left( 1-\sin x \right)}^{\dfrac{1}{3}}}}.
As xπ2x\to \dfrac{\pi }{2}, we take h=xπ20h=x-\dfrac{\pi }{2}\to 0. We get x=h+π2x=h+\dfrac{\pi }{2}
So, limxπ2cosx(1sinx)13=limh0cos(h+π2)(1sin(h+π2))13\underset{x\to \dfrac{\pi }{2}}{\mathop{\lim }}\,\dfrac{\cos x}{{{\left( 1-\sin x \right)}^{\dfrac{1}{3}}}}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cos \left( h+\dfrac{\pi }{2} \right)}{{{\left( 1-\sin \left( h+\dfrac{\pi }{2} \right) \right)}^{\dfrac{1}{3}}}}.
We have cos(h+π2)=sin(h);sin(h+π2)=cos(h)\cos \left( h+\dfrac{\pi }{2} \right)=-\sin \left( h \right);\sin \left( h+\dfrac{\pi }{2} \right)=\cos \left( h \right).
So, limxπ2f(x)=limh0sin(h)(1cosh)13\underset{x\to \dfrac{\pi }{2}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\sin \left( h \right)}{{{\left( 1-\cosh \right)}^{\dfrac{1}{3}}}}.
We know that (1cosh)=2sin2h2\left( 1-\cosh \right)=2{{\sin }^{2}}\dfrac{h}{2} and sin(h)=2sinh2cosh2\sin \left( h \right)=2\sin \dfrac{h}{2}\cos \dfrac{h}{2}.

& \underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\sin \left( h \right)}{{{\left( 1-\cosh \right)}^{\dfrac{1}{3}}}} \\\ & =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{2\sin \dfrac{h}{2}\cos \dfrac{h}{2}}{{{\left( 2{{\sin }^{2}}\dfrac{h}{2} \right)}^{\dfrac{1}{3}}}} \\\ & =\underset{h\to 0}{\mathop{\lim }}\,\left( {{2}^{\dfrac{2}{3}}}{{\left( \sin \dfrac{h}{2} \right)}^{\dfrac{1}{3}}}\cos \dfrac{h}{2} \right) \\\ \end{aligned}$$ We place the limits and get $$\underset{x\to \dfrac{\pi }{2}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( {{2}^{\dfrac{2}{3}}}{{\left( \sin \dfrac{h}{2} \right)}^{\dfrac{1}{3}}}\cos \dfrac{h}{2} \right)=0$$. This is because as h tends to zero sine value becomes zero and we know that anything multiplied by zero will be zero. **So, the correct answer is “Option D”.** **Note** : We could also have used the main formulas for the main expression where $$\cos x={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}$$ and $$1-\sin x={{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}^{2}}$$. Then we simplify the expression to place the limit value and find its solution. In mathematics, a limit is the value that a function approaches as the input approaches some value. Limits are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals.