Question
Question: If \[f\left( x \right) = \dfrac{{{9^x}}}{{{9^x} + 3}}\] then what will be the value of\[f\left( {\df...
If f(x)=9x+39x then what will be the value off(19961)+f(19962)+⋯⋯⋯+f(19961995)
A. 997
B.997.5
C.998
D.998.5
Solution
In this question, we need to find the value forf(x−1), and then we will be adding both f(x) and f(x−1) together, and then we will be solving step by step by using simple mathematics formulae and tactics. At the end we will substitute the values off(x)+f(x−1). After that we have to substitute this value in the question asked.
Complete step by step solution:
As given in the question,
f(x)=9x+39x
We will first find the value for f(x−1),
f(1−x)=91−x+391−x
Now separating the terms according to the property of indices
f(1−x)=9×9−x+39×9−x
Dividing the numerator and denominator by 9−x , we get,
f(1−x)=9+3×9x9
Dividing the numerator and denominator by 3, we get,
f(1−x)=3+9x3
Now, adding both the equations i.e. f(x)+f(1−x) , we get,
f(x)+f(1−x)=9x+39x+3+9x3
As the denominator of both the term is same , addition of numerator will take place directly,
f(x)+f(1−x)=3+9x9x+3
Hence, we get,
f(x)+f(1−x)=1
Since, there are a total of 1996 terms, numbers of pairs will be 998.
Now putting x=(19961),(19962)⋯⋯⋯(1996998) in the above equation, we get,
From the above equation, we can conclude that,
f(1996998)=21
Adding all the above terms together, we get,
f(19961)+f(19962)⋯⋯⋯f(19961995)=(1+1+⋯⋯upto997)+21
After substituting the values, we get,
f(19961)+f(19962)⋯⋯⋯f(19961995)=997+21
We know that,21=0.5
f(19961)+f(19962)⋯⋯⋯f(19961995)=997+0.5
Therefore, we conclude that,
f(19961)+f(19962)⋯⋯⋯f(19961995)=997.5
Hence, option b is correct.
Note: Students should understand and solve the question very carefully. Students should know all the formulae and domains. Students should be able to apply the formula as per the problem. Students should use the sign convention properly while solving the problem. Students should not get confused between the number of terms and number of pairs formed.