Solveeit Logo

Question

Question: If \[f\left( x \right) = \dfrac{{2x + 1}}{{3x - 2}}\] then \(f\left( {f\left( 2 \right)} \right)\) i...

If f(x)=2x+13x2f\left( x \right) = \dfrac{{2x + 1}}{{3x - 2}} then f(f(2))f\left( {f\left( 2 \right)} \right) is equal to
(A) 11
(B) 33
(C) 44
(D) 22

Explanation

Solution

In this type of problem of functions firstly find the value of internal function f(2)f\left( 2 \right) by putting the x=2x = 2 in the given equation then put the value obtained for f(2)f\left( 2 \right) in place of xx in the given equation of f(x)f\left( x \right), It will give the value of the function f(f(2))f\left( {f\left( 2 \right)} \right).

Complete step by step answer:
Here, The given function is f(x)=2x+13x2f\left( x \right) = \dfrac{{2x + 1}}{{3x - 2}}. This is an identity function.
We have to find the value of f(f(2))f\left( {f\left( 2 \right)} \right). If we compare this function with the function f(x)f\left( x \right) we can say that to find f(f(2))f\left( {f\left( 2 \right)} \right) we replace xx by value of f(2)f\left( 2 \right) in the given function.
So, firstly find the value of f(2)f\left( 2 \right)
By, Putting the value x=2x = 2 in the given equation we get the value of f(2)f\left( 2 \right) as
f(2)=2×2+13×22f\left( 2 \right) = \dfrac{{2 \times 2 + 1}}{{3 \times 2 - 2}}
f(2)=4+162\Rightarrow f\left( 2 \right) = \dfrac{{4 + 1}}{{6 - 2}}
f(2)=54\therefore f\left( 2 \right) = \dfrac{5}{4}
To find the value of f(f(2))f\left( {f\left( 2 \right)} \right) , we should replace the xx of given function by f(2)f\left( 2 \right).
It gives f(f(2))=2f(2)+13f(2)2f\left( {f\left( 2 \right)} \right) = \dfrac{{2f\left( 2 \right) + 1}}{{3f\left( 2 \right) - 2}}
Above, we get f(2)f\left( 2 \right) is equal to 54\dfrac{5}{4} , put the value of x=f(2)x = f\left( 2 \right) in the given function f(x)f\left( x \right)
Then, put f(2)=54f\left( 2 \right) = \dfrac{5}{4} in the above equation.

This implies
f(54)=10+441584\Rightarrow f\left( {\dfrac{5}{4}} \right) = \dfrac{{\dfrac{{10 + 4}}{4}}}{{\dfrac{{15 - 8}}{4}}}
f(54)=147\Rightarrow f\left( {\dfrac{5}{4}} \right) = \dfrac{{14}}{7}
f(54)=2\therefore f\left( {\dfrac{5}{4}} \right) = 2
Thus, the required value of the function f(f(2))=2f\left( {f\left( 2 \right)} \right) = 2

Hence, option D is the correct option.

Note:
The given function f(f(x))f\left( {f\left( x \right)} \right) is an identity function. We can verify it by putting x=yx = y in the given function. If a function is an identity function then its value will remain the same as that of the variable of that function.
Proof:Put in the equation f(x)=2x+13x2f\left( x \right) = \dfrac{{2x + 1}}{{3x - 2}}
x=yx = y, Then, we get f(y)=2y+13y2f\left( y \right) = \dfrac{{2y + 1}}{{3y - 2}}
f(f(y))=2f(y)+13f(y)2f\left( {f\left( y \right)} \right) = \dfrac{{2f\left( y \right) + 1}}{{3f\left( y \right) - 2}}
And then the value of
\eqalign{ & \Rightarrow f\left( {f\left( y \right)} \right) = \dfrac{{2\left( {\dfrac{{2y + 1}}{{3y - 2}}} \right) + 1}}{{3\left( {\dfrac{{2y + 1}}{{3y - 2}}} \right) - 2}} \cr & \Rightarrow f\left( {f\left( y \right)} \right) = \dfrac{{\dfrac{{4y + 2 + 3y - 2}}{{3y - 2}}}}{{\dfrac{{6y + 3 - 6y + 4}}{{3y - 2}}}} \cr & \Rightarrow f\left( {f\left( y \right)} \right) = \dfrac{{7y}}{7} \cr & \Rightarrow f\left( {f\left( y \right)} \right) = y \cr}
This derivation shows that this function is an identity function so the value of f(f(x))f\left( {f\left( x \right)} \right) is the same as the value of xx.