Solveeit Logo

Question

Question: If \(f\left( x \right)=\dfrac{1+{{e}^{\dfrac{1}{x}}}}{1-{{e}^{\dfrac{1}{x}}}}\text{ }\left( x\ne 0 \...

If f(x)=1+e1x1e1x (x0) and f(0)=1f\left( x \right)=\dfrac{1+{{e}^{\dfrac{1}{x}}}}{1-{{e}^{\dfrac{1}{x}}}}\text{ }\left( x\ne 0 \right)\text{ and f}\left( 0 \right)=1 , the f(x) is
(a) Left continuous at x=0
(b) Right continuous at x=0
(c) Continuous at x=0
(d) None

Explanation

Solution

Hint: Check the continuity of the function f(x) at x=0, and if it is not continuous check for the one sided continuity of the function at x=0. For finding the RHL, try to eliminate the e1x{{e}^{\dfrac{1}{x}}} from the denominator and numerator, while for finding the LHL, directly put the limit.

Complete step-by-step answer:
For f(x) to be continuous at x=a, the value of the function at x=a must be equal to limxaf(x) and limxa+f(x)\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f(x)\text{ and }\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f(x) .
Therefore, checking the continuity of the function f(x)=1+e1x1e1x (x0) and f(0)=1f\left( x \right)=\dfrac{1+{{e}^{\dfrac{1}{x}}}}{1-{{e}^{\dfrac{1}{x}}}}\text{ }\left( x\ne 0 \right)\text{ and f}\left( 0 \right)=1 .
First, finding the right-hand limit of the given function.
limx0+1+e1x1e1x\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1+{{e}^{\dfrac{1}{x}}}}{1-{{e}^{\dfrac{1}{x}}}}
Now, if we take e1x{{e}^{\dfrac{1}{x}}} from both, the denominator and the numerator of the expression, we get
=limx0+e1x(1+e1x)e1x(e1x1)\underset{x\to {{0}^{+}}}{\mathop{=\lim }}\,\dfrac{{{e}^{\dfrac{1}{x}}}\left( 1+{{e}^{-\dfrac{1}{x}}} \right)}{{{e}^{\dfrac{1}{x}}}\left( {{e}^{-\dfrac{1}{x}}}-1 \right)}
Now we know that as x approaches to 0 from the right side, the value of 1x-\dfrac{1}{x} approaches -\infty , hence the value of e1x{{e}^{-\dfrac{1}{x}}} tends to be zero.
limx0+e1x(1+e1x)e1x(e1x1)=1+001=1\therefore \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{e}^{\dfrac{1}{x}}}\left( 1+{{e}^{-\dfrac{1}{x}}} \right)}{{{e}^{\dfrac{1}{x}}}\left( {{e}^{-\dfrac{1}{x}}}-1 \right)}=\dfrac{1+0}{0-1}=-1
Next, finding the left hand limit.
limx01+e1x1e1x\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{1+{{e}^{\dfrac{1}{x}}}}{1-{{e}^{\dfrac{1}{x}}}}
Now we know that as x approaches to 0 from the left side, the value of 1x\dfrac{1}{x} approaches -\infty , hence the value of e1x{{e}^{\dfrac{1}{x}}} tends to be zero.
limx01+e1x1e1x=1+010=1\therefore \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{1+{{e}^{\dfrac{1}{x}}}}{1-{{e}^{\dfrac{1}{x}}}}=\dfrac{1+0}{1-0}=1

As we can see, the left-hand limit of the function is equal to the value of the limit at zero, so the function is left continuous at x=0. Hence, the answer to the above question is option (a).

Note: Whenever you come across the forms 00\dfrac{0}{0} or \dfrac{\infty }{\infty } always give a try to L-hospital’s rule as this may give you the answer in the fastest possible manner. Also, keep a habit of checking the indeterminate forms of the expressions before starting with the questions of limit as this helps you to select the shortest possible way to reach the answer.