Question
Question: If \(f\left( x \right) = \cos x\cos 2x\cos 4x\cos 8x\cos 16x\), then \(f'\left( {\dfrac{\pi }{4}} \r...
If f(x)=cosxcos2xcos4xcos8xcos16x, then f′(4π) is equal to
A) 2
B) 21
C) 0
D) 23
Solution
In order to find the value of f′(4π), we need to solve the function f(x)=cosxcos2xcos4xcos8xcos16x to its simplest term possible by dividing the function by 2sinx and continue it, then differentiate the function with respect to x. Substitute the value of x=4π, simplify and get the results.
Formula used:
2sinxcosx=sin2x
dxd(vu)=v2v(dxdu)−u(dxdv)
sin4π=cos4π=21
cos8π=1 and sin8π=0
Complete step by step answer:
We are given with the function, f(x)=cosxcos2xcos4xcos8xcos16x and we need to solve this function in order to find the value of f′(4π).
Let’s start with the function f(x)=cosxcos2xcos4xcos8xcos16x.
Multiplying and dividing the function by 2sinx, we get:
f(x)=2sinx2sinxcosxcos2xcos4xcos8xcos16x
From the trigonometric angles and sub- angle’s, we know that 2sinxcosx=sin2x. So, substituting this value in the above function, we get:
⇒f(x)=2sinxsin2xcos2xcos4xcos8xcos16x
Again, multiplying and dividing the value by 2, we get:
⇒f(x)=2×2sinx2sin2xcos2xcos4xcos8xcos16x
⇒f(x)=4sinx2sin2xcos2xcos4xcos8xcos16x ……(1)
We can see there is 2sin2xcos2x, which can be written as:
2sin2xcos2x=sin2(2x)=sin4x
Substituting the above value in the equation 1 and we get:
f(x)=4sinxsin4xcos4xcos8xcos16x
Multiplying and dividing the value by 2, we get:
⇒f(x)=2×4sinx2sin4xcos4xcos8xcos16x
⇒f(x)=8sinx2sin4xcos4xcos8xcos16x ……(2)
We can see again there is 2sin4xcos4x, which can be written as:
2sin4xcos4x=sin2(4x)=sin8x
Substituting the above value in the equation 2 and we get:
f(x)=8sinxsin8xcos8xcos16x
These steps to be followed again.
So, again multiplying and dividing the function by 2, we get:
⇒f(x)=2×8sinx2sin8xcos8xcos16x
⇒f(x)=16sinx2sin8xcos8xcos16x
Again, we get 2sin8xcos8x, which can be written as 2sin8xcos8x=sin2(8x)=sin16x.
Substituting this value in the above function, we get:
f(x)=16sinxsin16xcos16x
One last time multiplying and dividing the function by 2:
⇒f(x)=2×16sinx2sin16xcos16x
⇒f(x)=32sinx2sin16xcos16x
Writing 2sin16xcos16x=sin2(16x)=sin32x in the above function, we get:
f(x)=32sinxsin32x …….(3)
And, we can see that it cannot be further solved.
Now, since we wanted f′(x), so differentiating equation 3 with respect to x and we get:
f′(x)=dxd(32sinxsin32x) ……(4)
Since, the function is in the form of quotient rule of differentiation, that is dxd(vu) which when differentiated, we get:
dxd(vu)=v2v(dxdu)−u(dxdv) …………(5)
Comparing equation 4 with dxd(vu)=v2v(dxdu)−u(dxdv), we get:
dxd(32sinxsin32x)=(32sinx)232sinx(dxd(sin32x))−sin32x(dxd(32sinx)) .……..(6)
Now,
Comparing equation 4 with dxd(vu), we get:
u=sin32x
v=32sinx
So, differentiating them we get:
dxdu=dxd(sin32x)=32cos32x
dxdv=dxd(32sinx)=32cosx
Substituting these values in equation 6, we get:
⇒dxd(32sinxsin32x)=(32sinx)232sinx(32cos32x)−sin32x(32cosx)
Simplifying it we get:
⇒dxd(32sinxsin32x)=(32sinx)2(32)2sinxcos32x−32cosxsin32x
⇒f′(x)=(32sinx)2(32)2sinxcos32x−32cosxsin32x
Substituting x=4π:
⇒f′(4π)=(32sin4π)2(32)2sin4πcos32(4π)−32cos4πsin32(4π)
⇒f′(4π)=(32sin4π)2(32)2sin4πcos8π−32cos4πsin8π
Since, we know that sin4π=cos4π=21 and cos8π=1 and sin8π=0.
So, we get:
⇒f′(4π)=(32×21)2((32)2×21×1)−(32×21×0)
⇒f′(4π)=(32)2×(21)2(32)2×21
Cancelling the similar terms, we get:
⇒f′(4π)=211=2
f′(4π)=2
Hence, Option (A) is correct.
Note:
1. Remember to solve the questions step by step, because we can see that every step followed was the same, so to avoid confusion or any error use this method.
2. It’s important to know the correct formula that will be used, the wrong formula at the wrong step can give wrong results.