Question
Mathematics Question on Statistics
If f(x)=cos−1(1+(logex)21−(logex)2) , then f′(e1)=
A
2
B
0
C
-1
D
e
Answer
e
Explanation
Solution
f(x)=cos−1[1+(logex)21−(logex)2]
Putting logx=tanθ⇒θ=tan−1(logx)i.e.,x=tanθ
f(x)=cos−1(1+tan2θ1−tan2θ)
f(x)=cos−1cos2θ=2θ
=2tan−1(logx)
Differentiating w.r.t. x, we get
f′(x)=21+(logx)21.x1=x[1+(logx)2]2
f′(e1)=(1e)[1+(log(1e))2]2=(1+(−1)2)2e
=22e=e