Solveeit Logo

Question

Mathematics Question on Statistics

If f(x)=cos1(1(logex)21+(logex)2)f\left(x\right)= \cos^{-1} \left(\frac{1-\left(\log _{e} x\right)^{2}}{1+\left(\log _{e} x\right)^{2}}\right) , then f(1e)= f'\left(\frac{1}{e}\right) =

A

2

B

0

C

-1

D

e

Answer

e

Explanation

Solution

f(x)=cos1[1(logex)21+(logex)2]f\left(x\right)= \cos^{-1} \left[\frac{1-\left(\log _{e} x\right)^{2}}{1+\left(\log _{e} x\right)^{2}}\right]
Putting logx=tanθθ=tan1(logx)i.e.,x=tanθ \log x = \tan\theta \Rightarrow \theta =\tan^{-1} \left(\log x\right) \: i.e., x = ^{\tan \theta}
f(x)=cos1(1tan2θ1+tan2θ)f\left(x\right)= \cos ^{-1} \left(\frac{1-\tan ^{2} \theta }{1+\tan ^{2} \theta }\right)
f(x)=cos1cos2θ=2θf\left(x\right) = \cos ^{-1} \cos 2\theta = 2\theta
=2tan1(logx)= 2 \tan^{-1} \left(\log x\right)
Differentiating w.r.t. x, we get
f(x)=211+(logx)2.1x=2x[1+(logx)2]f'\left(x\right) = 2 \frac{1}{1+ \left(\log x\right)^{2}} . \frac{1}{x} = \frac{2}{x\left[1+ \left(\log x\right)^{2}\right]}
f(1e)=2(1e)[1+(log(1e))2]=2e(1+(1)2)f'\left(\frac{1}{e}\right) = \frac{2}{\left(1 e\right) \left[1+\left(\log \left(1 e\right)\right)^{2}\right]} = \frac{2e}{\left(1+\left(-1\right)^{2}\right)}
=2e2=e= \frac{2e}{2} =e