Question
Mathematics Question on Continuity
If f(x)=cos−1[1+(logx)21−(logx)2] then the value of f′(e) is equal to
A
1
B
e1
C
e2
D
e22
Answer
e1
Explanation
Solution
Rewriting the equation as cos[f(x)]=1+(logx)21−(logx)2.
Now taking derivatives we get,
−sin[f(x)]f′(x)=[1+(logx)2]2[1+(logx)2][−2(logx)x]−[1−(logx)2][2(logx)x]
Evaluating at x=e we get,
−f′(x)=22(2)(−2/e)−(0)(2/2)
This implies that f′(x)=1/e.
Therefore, the correct option is (B): e1