Solveeit Logo

Question

Mathematics Question on Continuity

If f(x)=cos1[1(logx)21+(logx)2]f\left(x\right) = \cos^{-1} \left[\frac{1-\left(\log x\right)^{2}}{1+\left(\log x\right)^{2}}\right] then the value of f(e)f'(e) is equal to

A

1

B

1e\frac{1}{e}

C

2e\frac{2}{e}

D

2e2\frac{2}{e^2}

Answer

1e\frac{1}{e}

Explanation

Solution

Rewriting the equation as cos[f(x)]=1(logx)21+(logx)2\cos [ f ( x )]=\frac{1-(\log x )^{2}}{1+(\log x)^{2}}.
Now taking derivatives we get,
sin[f(x)]f(x)=[1+(logx)2][2(logx)x][1(logx)2][2(logx)x][1+(logx)2]2-\sin [ f ( x )] f '( x )=\frac{\left[1+(\log x)^{2}\right][-2(\log x ) x ]-\left[1-(\log x )^{2}\right][2(\log x ) x ]}{\left[1+(\log x)^{2}\right]^{2}}
Evaluating at x=ex = e we get,
f(x)=(2)(2/e)(0)(2/2)22-f'(x)=\frac{(2)(-2 / e)-(0)(2 / 2)}{2^{2}}
This implies that f(x)=1/ef '( x )=1 / e.

Therefore, the correct option is (B): 1e\frac 1e