Solveeit Logo

Question

Question: If \(f\left( x \right) + 2f\left( {\dfrac{1}{x}} \right) = 3x,x \ne 0\) and \(S = \left\\{ {x \in R:...

If f(x)+2f(1x)=3x,x0f\left( x \right) + 2f\left( {\dfrac{1}{x}} \right) = 3x,x \ne 0 and S = \left\\{ {x \in R:f\left( x \right) = f\left( { - x} \right)} \right\\}, then SS
A) is an empty set
B) contains exactly one element
C) contains exactly two elements
D) contains more than two elements

Explanation

Solution

If f(x)+2f(1x)=3x,x0f\left( x \right) + 2f\left( {\dfrac{1}{x}} \right) = 3x,x \ne 0 is given, then substitute xx such that we get two equations and can be solved easily like replace xx by 1x\dfrac{1}{x}. We get
f(1x)+2f(x)=3xf\left( {\dfrac{1}{x}} \right) + 2f\left( x \right) = \dfrac{3}{x} and now solve the two equations to get the value of f(x)f(x) then substitute in given set SS and get the required answer.

Complete step-by-step answer:
Here we are given an equation f(x)+2f(1x)=3x(1)f\left( x \right) + 2f\left( {\dfrac{1}{x}} \right) = 3x -----(1), where x0x \ne 0.
Now to make a similar equation, we can replace xx by 1x\dfrac{1}{x} in the above equation.
We will get f(1x)+2f(x)=3x(2)f\left( {\dfrac{1}{x}} \right) + 2f\left( x \right) = \dfrac{3}{x} -----(2)
Now from (2) we get f(1x)=3x2f(x)f\left( {\dfrac{1}{x}} \right) = \dfrac{3}{x} - 2f\left( x \right)
Now, substituting this value to equation (1)
We know, f(x)+2f(1x)=3xf\left( x \right) + 2f\left( {\dfrac{1}{x}} \right) = 3x
Now we know f(1x)=3x2f(x)f\left( {\dfrac{1}{x}} \right) = \dfrac{3}{x} - 2f\left( x \right)
So,
f(x)+2(3x2f(x))=3x =f(x)+6x4f(x)=3x f(x)=2xx  f\left( x \right) + 2\left( {\dfrac{3}{x} - 2f\left( x \right)} \right) = 3x \\\ = f\left( x \right) + \dfrac{6}{x} - 4f\left( x \right) = 3x \\\ f\left( x \right) = \dfrac{2}{x} - x \\\
Now according to question,
In the set SS, it is given that f(x)=f(x)f\left( x \right) = f\left( { - x} \right). So we have to find how many elements are in SS
So, upon solving,
f(x)=f(x) 2xx=2x(x) 2xx=2x+x 4x=2x x2=2 x=±2  f\left( x \right) = f\left( { - x} \right) \\\ \dfrac{2}{x} - x = \dfrac{2}{{ - x}} - \left( { - x} \right) \\\ \dfrac{2}{x} - x = - \dfrac{2}{x} + x \\\ \dfrac{4}{x} = 2x \\\ {x^2} = 2 \\\ x = \pm \sqrt 2 \\\
We got two values of xx, that is +2,2+ \sqrt 2 , - \sqrt 2.
So, SS contains exactly two elements.

So, the correct answer is “Option C”.

Note: If f(x)f\left( x \right) is given any polynomial let ax2+bx+ca{x^2} + bx + c. If we replace xx by 1x\dfrac{1}{x}, then , f(1x)=a(1x)2+b(1x)+cf\left( {\dfrac{1}{x}} \right) = a{\left( {\dfrac{1}{x}} \right)^2} + b\left( {\dfrac{1}{x}} \right) + c. So, xx must be replaced from every place.