Solveeit Logo

Question

Question: If \(f\left( x \right)+2f\left( 1-x \right)={{x}^{2}}+2\ \ \gamma \ \ x\in \text{R}\) then find f (x...

If f(x)+2f(1x)=x2+2  γ  xRf\left( x \right)+2f\left( 1-x \right)={{x}^{2}}+2\ \ \gamma \ \ x\in \text{R} then find f (x):

A. (x1)2/3{{\left( x-1 \right)}^{{\scriptstyle{}^{2}/{}_{3}}}}
B. (x2)2/3-{{\left( x-2 \right)}^{{\scriptstyle{}^{2}/{}_{3}}}}
C. x21{{x}^{2}}-1
D. x22{{x}^{2}}-2

Explanation

Solution

Since f(x)+2f(1x)=x2+2f(x)+2f\left( 1-x \right)={{x}^{2}}+2 is given. We replace x by (1x)\left( 1-x \right) to get another equation. We solve both the equations to calculate f (x).

Complete step by step solution: We are given that,

f(x)+2f(1x)=x2+2:f(x)+2f(1-x)={{x}^{2}}+2: →(1)

Replacing x by (1x)\left( 1-x \right) in the above equation (1) to get;

f(1x)+2f[1(1x)]=(1x)2+2f(1-x)+2f\left[ 1-\left( 1-x \right) \right]={{\left( 1-x \right)}^{2}}+2

Solving this equation, we get

f(1x)+2f(11+x)=x22x+1+2f(1-x)+2f\left( 1-1+x \right)={{x}^{2}}-2x+1+2

Simplifying further we get,

f(1x)+2f(x)=x22x+3f(1-x)+2f\left( -x \right)={{x}^{2}}-2x+3

We have two equations:

f(x)+2f(1x)=x2+2f(x)+2f\left( 1-x \right)={{x}^{2}}+2 → eq (1)
& 2f(x)+f(1x)=x22x+32f(x)+f\left( 1-x \right)={{x}^{2}}-2x+3 → eq (2)

Subtract eq (1) from eq (2) we get

2f(x)+f(1x)f(x)2f(1x)=x22x+3x222f(x)+f\left( 1-x \right)-f(x)-2f(1-x)={{x}^{2}}-2x+3-{{x}^{2}}-2
f(x)f(1x)=2x+1\Rightarrow f(x)-f\left( 1-x \right)=-2x+1 → eq (3)

But we know: 2f(x)+f(1x)=x22x+32f(x)+f\left( 1-x \right)={{x}^{2}}-2x+3 from eq (2)
f(1x)=x22x+32f(x)\Rightarrow f(1-x)={{x}^{2}}-2x+3-2f\left( x \right)

Substituting this f(1x)=x22x+32f(x)f(1-x)={{x}^{2}}-2x+3-2f\left( x \right) in eq (3) to get

f(x)(x22x+32f(x))=2x+1\Rightarrow f(x)-\left( {{x}^{2}}-2x+3-2f(x) \right)=-2x+1
f(x)x2+2x3+2f(x)=2x+1\Rightarrow f(x)-{{x}^{2}}+2x-3+2f(x)=-2x+1
3f(x)=2x+1+x22x+3\Rightarrow 3f(x)=-2x+1+{{x}^{2}}-2x+3
3f(x)=x24x+43f(x)={{x}^{2}}-4x+4
3f(x)=(x2)23f(x)={{\left( x-2 \right)}^{2}}
\therefore
∴None of the option matches the answer

The answer f(x)=(x2)23f\left( x \right)=\dfrac{{{\left( x-2 \right)}^{2}}}{3}

Note: In these types of problem, we always replace x by some 1 – x or 1+ x or 2 – x.Whatever the question demands and then we eliminate another variable to calculate f(x).