Solveeit Logo

Question

Question: If \(f\left( x \right)=2{{x}^{2}}+5\) and \(g\left( x \right)=3x+a\), how do you find a so that the ...

If f(x)=2x2+5f\left( x \right)=2{{x}^{2}}+5 and g(x)=3x+ag\left( x \right)=3x+a, how do you find a so that the graph of f(g(x))f\left( g\left( x \right) \right) crosses the y-axis at 23?

Explanation

Solution

We first find the composite function f(g(x))f\left( g\left( x \right) \right). Then we find the Y-axis intercept by putting the value of x=0x=0. We solve it to find the value of a. It is given that the Y intercept is 23.

Complete step by step solution:
It is given that f(x)=2x2+5f\left( x \right)=2{{x}^{2}}+5 and g(x)=3x+ag\left( x \right)=3x+a. We first have to find the composite function of f(g(x))f\left( g\left( x \right) \right).
Therefore, f(g(x))=f(3x+a)=2(3x+a)2+5f\left( g\left( x \right) \right)=f\left( 3x+a \right)=2{{\left( 3x+a \right)}^{2}}+5.
Now we have to find the value of a so that the graph of f(g(x))f\left( g\left( x \right) \right) crosses the y-axis at 23.
We assume y=f(g(x))=2(3x+a)2+5y=f\left( g\left( x \right) \right)=2{{\left( 3x+a \right)}^{2}}+5.
This means we first find the Y-axis intercepts. In that case for Y-axis, we have to take the coordinate values of x as 0. Putting the value of x=0x=0 in the equation y=2(3x+a)2+5y=2{{\left( 3x+a \right)}^{2}}+5, we get
y=2(3x+a)2+5 y=2(3×0+a)2+5=2a2+5 \begin{aligned} & y=2{{\left( 3x+a \right)}^{2}}+5 \\\ & \Rightarrow y=2{{\left( 3\times 0+a \right)}^{2}}+5=2{{a}^{2}}+5 \\\ \end{aligned}
It is given the value of y will be 23.
This gives 2a2+5=232{{a}^{2}}+5=23. We solve the quadratic to find the value of a.
We need to find the solution of the given equation 2a218=02{{a}^{2}}-18=0.
First, we divide both sides of the equation by 2 and get 2a2182=0a29=0\dfrac{2{{a}^{2}}-18}{2}=0\Rightarrow {{a}^{2}}-9=0.
Now we have a quadratic equation a29=0{{a}^{2}}-9=0 which gives a232=0{{a}^{2}}-{{3}^{2}}=0.
Now we find the factorisation of the equation a232=0{{a}^{2}}-{{3}^{2}}=0 using the identity of x2y2=(x+y)(xy){{x}^{2}}-{{y}^{2}}=\left( x+y \right)\left( x-y \right).
Therefore, we get
a232=0 (a+3)(a3)=0 \begin{aligned} & {{a}^{2}}-{{3}^{2}}=0 \\\ & \Rightarrow \left( a+3 \right)\left( a-3 \right)=0 \\\ \end{aligned}
We get the values of a as either (a+3)=0\left( a+3 \right)=0 or (a3)=0\left( a-3 \right)=0.
This gives a=3,3a=-3,3.

Note: We can also apply the quadratic equation formula to solve the equation 2a218=02{{a}^{2}}-18=0.
We know for a general equation of quadratic ax2+bx+c=0a{{x}^{2}}+bx+c=0, the value of the roots of x will be x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}.
In the given equation we have 2a218=02{{a}^{2}}-18=0. The values of coefficients are 2,0,182,0,-18 respectively.
We put the values and get a as a=0±024×2×(18)2×2=±1444=±124=±3a=\dfrac{-0\pm \sqrt{{{0}^{2}}-4\times 2\times \left( -18 \right)}}{2\times 2}=\dfrac{\pm \sqrt{144}}{4}=\dfrac{\pm 12}{4}=\pm 3.