Question
Mathematics Question on Inverse Trigonometric Functions
If f(x)=2tan−1x+sin−1(1+x22x),x>1, then f(t) is equal to :
A
2π
B
π
C
4tan−1(5)
D
tan−1(15665)
Answer
π
Explanation
Solution
Given that:
f(x)=2tan−1x+sin−1(1+x22x) x >0
For x>1
sin−1(1+x22x) = π−2tan−1x
⇒ f(x) = 2tan−1π+π−2tan−1x
⇒ f(x) = π
∴f(5)=π