Solveeit Logo

Question

Question: If f \(\left( \frac{3x - 4}{3x + 4} \right)\) = x + 2 then \(\int_{}^{}{f(x)dx}\) is equal to...

If f (3x43x+4)\left( \frac{3x - 4}{3x + 4} \right) = x + 2 then f(x)dx\int_{}^{}{f(x)dx} is equal to

A

ex+2 ln 3x43x+4\left| \frac{3x - 4}{3x + 4} \right| + c

B

83- \frac{8}{3}ln |(1 – x)| + 23\frac{2}{3}x + c

C

83\frac{8}{3}ln |x – 1| + x3\frac{x}{3} + c

D

None of these

Answer

83- \frac{8}{3}ln |(1 – x)| + 23\frac{2}{3}x + c

Explanation

Solution

3x43x+4\frac { 3 x - 4 } { 3 x + 4 } = t

3x – 4 = 3xt + 4t

x = 4t+43(1t)\frac{4t + 4}{3(1 - t)}

f(t) = 4t+43(1t)\frac{4t + 4}{3(1 - t)} + 2

f(x) = 4x+43(1x)\frac{4x + 4}{3(1 - x)} + 2 = 4(x1)+83(1x)\frac{4(x - 1) + 8}{3(1 - x)} + 2

f(x) = 2 – 43\frac{4}{3}83(x1)\frac{8}{3(x - 1)} = 2383(x1)\frac{2}{3} - \frac{8}{3(x - 1)}

= 23\frac{2}{3}x – 83\frac{8}{3}ln |x – 1| + c