Question
Question: If \[f\left( {\dfrac{{3x - 4}}{{3x + 4}}} \right) = x + 2\], \[x \ne - \dfrac{4}{3},\] and \[\int {f...
If f(3x+43x−4)=x+2, x=−34, and ∫f(x)dx=Alog∣1−x∣+Bx+C, then the ordered pair (A,B) is equal to (where C is the constant of integration)
(A). (38,32)
(B). (−38,32)
(C). (−38,−32)
(D). (38,−32)
Solution
To solve this question at first we have to differentiate the integral with respect to x to evaluate f(x). Then we must substitute 3x+43x−4 in place of x in the obtained expression and determine the value of A and B by the method of equating the coefficients.
Complete step-by-step answer :
The integral is given by
∫f(x)dx=Alog∣1−x∣+Bx+C ……………………………… (1)
Now we have to get the value of f(x) in terms of A and B. differentiating both the sides with respect to x, we will get,
\Rightarrow f\left( {\dfrac{{3x - 4}}{{3x + 4}}} \right) = \dfrac{A}{{\dfrac{{3x - 4}}{{3x + 4}} - 1}} + B \\
\Rightarrow f\left( {\dfrac{{3x - 4}}{{3x + 4}}} \right) = \dfrac{{A\left( {3x + 4} \right)}}{{3x - 4 - \left( {3x + 4} \right)}} + B \\
\Rightarrow f\left( {\dfrac{{3x - 4}}{{3x + 4}}} \right) = - \dfrac{{A\left( {3x + 4} \right)}}{8} + B \\
\Rightarrow x + 2 = - \dfrac{{A\left( {3x + 4} \right)}}{8} + B \\
\Rightarrow 8\left( {x + 2} \right) = - A\left( {3x + 4} \right) + 8B \\
\Rightarrow 8x + 16 = ( - 3A)x + (8B - 4A) \\
\Rightarrow 8 = - 3A \\
\Rightarrow A = - \dfrac{8}{3} \\
\Rightarrow 8B - 4A = 16 \\
\Rightarrow B = \dfrac{{16 + 4A}}{8} \\
\Rightarrow B = \dfrac{{16 + 4\left( { - \dfrac{8}{3}} \right)}}{8} \\
\Rightarrow B = \dfrac{{16}}{{24}} = \dfrac{2}{3} \\