Solveeit Logo

Question

Question: If \[f\left( {\dfrac{{3x - 4}}{{3x + 4}}} \right) = x + 2\], then \[\int {f(x)} dx = \] A. \[{e^{x...

If f(3x43x+4)=x+2f\left( {\dfrac{{3x - 4}}{{3x + 4}}} \right) = x + 2, then f(x)dx=\int {f(x)} dx =
A. ex+2log3x43x+4+c{e^{x + 2}}\log |\dfrac{{3x - 4}}{{3x + 4}}| + c
B. 83log1x+23x+c - \dfrac{8}{3}\log |1 - x| + \dfrac{2}{3}x + c
C. 83log1x+x3+c\dfrac{8}{3}\log |1 - x| + \dfrac{x}{3} + c
D. e3x43x+4x222x+c{e^{\dfrac{{3x - 4}}{{3x + 4}}}} - \dfrac{{{x^2}}}{2} - 2x + c

Explanation

Solution

First of all, we need to find the value of f(x)f(x). For that, we will first let 3x43x+4\dfrac{{3x - 4}}{{3x + 4}} be equal to some variable tt. After that, we will apply componendo and dividendo rule on 3x43x+4=t\dfrac{{3x - 4}}{{3x + 4}} = t and then find the value of xx in terms of tt. After that, we will find the value of x+2x + 2 in terms of tt. After finding the value of x+2x + 2 in terms of tt, we will substitute the value of 3x43x+4\dfrac{{3x - 4}}{{3x + 4}} and x+2x + 2 in the given condition and then obtain a function f(t)f(t) which will be in terms of tt only. After we obtain the value of f(t)f(t), we can replace tt by xx and then we will have our f(x)f(x). Then, we will just integrate the value of f(x)f(x) with respect to xx and we will obtain the required answer.

Formula used:
COMPONENDO AND DIVIDENDO RULE:
ab=cda+bab=c+dcd\dfrac{a}{b} = \dfrac{c}{d} \Leftrightarrow \dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}

Complete step by step answer:
We have, f(3x43x+4)=x+2(1)f\left( {\dfrac{{3x - 4}}{{3x + 4}}} \right) = x + 2 - - - - - (1)
Let us suppose,
3x43x+4=t(2)\dfrac{{3x - 4}}{{3x + 4}} = t - - - - - (2)
3x43x+4=t1\Rightarrow \dfrac{{3x - 4}}{{3x + 4}} = \dfrac{t}{1}
Applying componendo and dividendo, we get
(3x4)+(3x+4)(3x4)(3x+4)=t+1t1\Rightarrow \dfrac{{(3x - 4) + (3x + 4)}}{{(3x - 4) - (3x + 4)}} = \dfrac{{t + 1}}{{t - 1}}
3x4+3x+43x43x4=t+1t1\Rightarrow \dfrac{{3x - 4 + 3x + 4}}{{3x - 4 - 3x - 4}} = \dfrac{{t + 1}}{{t - 1}}
Adding the terms in numerator and denominator, we get,
6x8=t+1t1\Rightarrow \dfrac{{6x}}{{ - 8}} = \dfrac{{t + 1}}{{t - 1}}
Cancelling common factors in numerator and denominator, we get,
3x4=t+1t1\Rightarrow - \dfrac{{3x}}{4} = \dfrac{{t + 1}}{{t - 1}}
34x=t+1t1\Rightarrow - \dfrac{3}{4}x = \dfrac{{t + 1}}{{t - 1}}

By cross Multiplying
x=43(t+1t1)\Rightarrow x = - \dfrac{4}{3}\left( {\dfrac{{t + 1}}{{t - 1}}} \right)
Now, adding 2 both sides.
x+2=43(t+1t1)+2\Rightarrow x + 2 = - \dfrac{4}{3}\left( {\dfrac{{t + 1}}{{t - 1}}} \right) + 2
x+2=4(t+1)3(t1)+2\Rightarrow x + 2 = \dfrac{{ - 4(t + 1)}}{{3(t - 1)}} + 2
Taking LCM on the right hand side
x+2=4(t+1)+(2×3(t1))3(t1)\Rightarrow x + 2 = \dfrac{{ - 4(t + 1) + (2 \times 3(t - 1))}}{{3(t - 1)}}
x+2=4(t+1)+6(t1)3(t1)\Rightarrow x + 2 = \dfrac{{ - 4(t + 1) + 6(t - 1)}}{{3(t - 1)}}
Now opening the brackets, we get
x+2=4t4+6t63(t1)\Rightarrow x + 2 = \dfrac{{ - 4t - 4 + 6t - 6}}{{3(t - 1)}}

Taking variables together in numerator,
x+2=(4t+6t)463(t1)\Rightarrow x + 2 = \dfrac{{( - 4t + 6t) - 4 - 6}}{{3(t - 1)}}
x+2=2t103(t1)\Rightarrow x + 2 = \dfrac{{2t - 10}}{{3(t - 1)}}
Taking out 22common from the numerator on the right side.
x+2=2(t5)3(t1)(3)\Rightarrow x + 2 = \dfrac{{2(t - 5)}}{{3(t - 1)}} - - - - - (3)
Now substituting (2) and (3) in (1), we get,
f(t)=2(t5)3(t1)\Rightarrow f(t) = \dfrac{{2(t - 5)}}{{3(t - 1)}}
Now, replacing tt by xx in the above equation, we get
f(x)=2(x5)3(x1)\Rightarrow f(x) = \dfrac{{2(x - 5)}}{{3(x - 1)}}
We need to find f(x)dx\int {f(x)} dx which means, we need to find 2(x5)3(x1)dx\int {\dfrac{{2(x - 5)}}{{3(x - 1)}}} dx

So now, we will solve 2(x5)3(x1)dx\int {\dfrac{{2(x - 5)}}{{3(x - 1)}}} dx
2(x5)3(x1)dx=23x5x1dx\Rightarrow \int {\dfrac{{2(x - 5)}}{{3(x - 1)}}} dx = \dfrac{2}{3}\int {\dfrac{{x - 5}}{{x - 1}}dx}
As we can write 5=41 - 5 = - 4 - 1, using this we get
23x41x1dx\Rightarrow \dfrac{2}{3}\int {\dfrac{{x - 4 - 1}}{{x - 1}}dx}
23(x1)4x1dx\Rightarrow \dfrac{2}{3}\int {\dfrac{{(x - 1) - 4}}{{x - 1}}} dx
Splitting the denominator, we have
23[(x1)x14x1]dx\Rightarrow \dfrac{2}{3}\int {\left[ {\dfrac{{(x - 1)}}{{x - 1}} - \dfrac{4}{{x - 1}}} \right]} dx
Cancelling common factors in numerator and denominator and separating the integrals, we get,
23[14x1]dx\Rightarrow \dfrac{2}{3}\int {\left[ {1 - \dfrac{4}{{x - 1}}} \right]} dx
23[1dx4x1dx]\Rightarrow \dfrac{2}{3}\left[ {\int 1 dx - \int {\dfrac{4}{{x - 1}}dx} } \right]

Using the integration formula1dx=x+c\int 1 dx = x + c
23[x4dxx1]\Rightarrow \dfrac{2}{3}\left[ {x - 4\int {\dfrac{{dx}}{{x - 1}}} } \right]
Using dxx+c=logx+c+k\int {\dfrac{{dx}}{{x + c}} = \log |x + c| + k} , we have
23[x4logx1]+c\Rightarrow \dfrac{2}{3}[x - 4\log |x - 1|] + c
Opening the brackets, we get
23x23×4logx1+c\Rightarrow \dfrac{2}{3}x - \dfrac{2}{3} \times 4\log |x - 1| + c
23x83logx1+c\Rightarrow \dfrac{2}{3}x - \dfrac{8}{3}\log |x - 1| + c
Hence, we get
f(x)dx=23x83logx1+c\int {f(x)} dx = \dfrac{2}{3}x - \dfrac{8}{3}\log |x - 1| + c
f(x)dx=83log1x+23x+c\therefore \int {f(x)} dx = - \dfrac{8}{3}\log |1 - x| + \dfrac{2}{3}x + c

Therefore, the correct option is B.

Note: To find the value of f(x)f(x), we should keep in mind that we have to apply componendo and dividendo otherwise we will not be able to solve the problem for xx in terms of tt. Now, after Finding the value of f(x)f(x), we need to integrate f(x)f(x). We might get stuck while solving the integration value. So, we need to keep in mind the method to solve the integration. For such types of integration, we have to split some values from the numerator and then split the denominator and cancel some of the terms from numerator and denominator and then arrive at such an expression which can be integrated easily.