Question
Question: If f(θ) = \(\left| \begin{matrix} 1 & 1 & - 1 \\ 1 & e^{i\theta} & 1 \\ 1 & - 1 & - e^{\_ i\theta} \...
If f(θ) = 1111eiθ−1−11−e_iθthen
A
∫−π/2π/2f(θ)dθ=2∫0π/2f(θ)dθ
B
f(θ) is purely real
C
f(π/2) = 2
D
None of these
Answer
f(π/2) = 2
Explanation
Solution
On operating [R1 → R1 − R2 and R3 → R3 − R2],
f(θ) = 0101−eiθeiθ−1−eiθ−21−1−eiθ= (-1) [(1-eiθ)
(-1 - e-iθ) – 2(−1 − eiθ] = 2 when θ = 2π