Solveeit Logo

Question

Mathematics Question on limits and derivatives

If f(9)=9,f(9)=4f\left(9\right)= 9 , f'\left(9\right) = 4 then limx9f(x)3x3=\lim_{x\to9} \frac{\sqrt{f\left(x\right)} -3}{\sqrt{x} - 3} =

A

9

B

3

C

4

D

27

Answer

4

Explanation

Solution

We have limx9f(x)3x3(00from) \lim_{x\to9} \frac{\sqrt{f\left(x\right)} -3}{\sqrt{x} - 3} \left(\frac{0}{0} from\right)
Applying L-Hospital's Rule, we have
limx912(f(x))12f(x)12(x)12=limx9x12f(x)(f(x))12\lim _{x\to 9} \frac{\frac{1}{2} \left(f\left(x\right)\right)^{\frac{-1}{2}} f'\left(x\right)}{\frac{1}{2}\left(x\right)^{\frac{-1}{2}}} = \lim _{x\to 9} \frac{x^{\frac{1}{2}}f'\left(x\right)}{\left(f\left(x\right)\right)^{\frac{1}{2}}}
=(9)12f(9)(f(9))12=3.(4)(9)12=4= \frac{\left(9\right)^{\frac{1}{2}} f'\left(9\right)}{\left(f\left(9\right)\right)^{\frac{1}{2}} } = \frac{3.\left(4\right)}{\left(9\right)^{\frac{1}{2}}} = 4