Solveeit Logo

Question

Question: If \[f\left( 9 \right) = 9\] and \[f'\left( 9 \right) = 1\], then \[\mathop {\lim }\limits_{x \to 9}...

If f(9)=9f\left( 9 \right) = 9 and f(9)=1f'\left( 9 \right) = 1, then limx93f(x)3x\mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} is equal to
(a) 0
(b) 1
(c) 1 - 1
(d) None of these

Explanation

Solution

Here, we need to find the value for the given expression. Using the given information, algebraic identities, rationalising, and the formula of a derivative of a function at a point, we will simplify the given expression and find the required value.

Formula used:
We will use the following formulas:
1.The product of the sum and difference of two numbers is given by the algebraic identity (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}.
2.The derivative of a function f(x)f\left( x \right) at x=ax = a is given by the formula f(a)=limh0f(a+h)f(a)hf'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {a + h} \right) - f\left( a \right)}}{h}. This can be written as f(a)=limxaf(x)f(a)xaf'\left( a \right) = \mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right) - f\left( a \right)}}{{x - a}}, where h=xah = x - a.

Complete step-by-step answer:
We will simplify the given expression with the limit to find its value.
Factoring out 1 - 1 from the numerator and denominator of the expression limx93f(x)3x\mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }}, we get
limx93f(x)3x=limx91[f(x)3]1[x3]\Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{ - 1\left[ {\sqrt {f\left( x \right)} - 3} \right]}}{{ - 1\left[ {\sqrt x - 3} \right]}}
Simplifying the expression, we get
limx93f(x)3x=limx9f(x)3x3\Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{\sqrt {f\left( x \right)} - 3}}{{\sqrt x - 3}}
Multiplying and dividing the expression by x+3\sqrt x + 3, we get
limx93f(x)3x=limx9f(x)3x3×(x+3x+3) limx93f(x)3x=limx9f(x)3(x3)(x+3)×(x+3)\begin{array}{l} \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{\sqrt {f\left( x \right)} - 3}}{{\sqrt x - 3}} \times \left( {\dfrac{{\sqrt x + 3}}{{\sqrt x + 3}}} \right)\\\ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{\sqrt {f\left( x \right)} - 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} \times \left( {\sqrt x + 3} \right)\end{array}
Multiplying and dividing the expression by f(x)+3\sqrt {f\left( x \right)} + 3, we get
limx93f(x)3x=limx9f(x)3(x3)(x+3)×(x+3)×(f(x)+3f(x)+3) limx93f(x)3x=limx9(f(x)3)(f(x)+3)(x3)(x+3)×(x+3)×(1f(x)+3)\begin{array}{l} \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{\sqrt {f\left( x \right)} - 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} \times \left( {\sqrt x + 3} \right) \times \left( {\dfrac{{\sqrt {f\left( x \right)} + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)\\\ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{\left( {\sqrt {f\left( x \right)} - 3} \right)\left( {\sqrt {f\left( x \right)} + 3} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} \times \left( {\sqrt x + 3} \right) \times \left( {\dfrac{1}{{\sqrt {f\left( x \right)} + 3}}} \right)\end{array}
Simplifying the expression, we get
limx93f(x)3x=limx9(f(x)3)(f(x)+3)(x3)(x+3)×(x+3f(x)+3)\Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{\left( {\sqrt {f\left( x \right)} - 3} \right)\left( {\sqrt {f\left( x \right)} + 3} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} \times \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)
Substituting a=xa = \sqrt x and b=3b = 3 in the identity (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}, we get
(x3)(x+3)=(x)232\Rightarrow \left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right) = {\left( {\sqrt x } \right)^2} - {3^2}
Applying the exponents on the terms, we get
(x3)(x+3)=x9\Rightarrow \left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right) = x - 9
Substituting a=f(x)a = \sqrt {f\left( x \right)} and b=3b = 3 in the identity (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}, we get
(f(x)3)(f(x)+3)=(f(x))232\Rightarrow \left( {\sqrt {f\left( x \right)} - 3} \right)\left( {\sqrt {f\left( x \right)} + 3} \right) = {\left( {\sqrt {f\left( x \right)} } \right)^2} - {3^2}
Applying the exponents on the terms, we get
(f(x)3)(f(x)+3)=f(x)9\Rightarrow \left( {\sqrt {f\left( x \right)} - 3} \right)\left( {\sqrt {f\left( x \right)} + 3} \right) = f\left( x \right) - 9
Substituting (x3)(x+3)=x9\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right) = x - 9 and (f(x)3)(f(x)+3)=f(x)9\left( {\sqrt {f\left( x \right)} - 3} \right)\left( {\sqrt {f\left( x \right)} + 3} \right) = f\left( x \right) - 9 in the equation limx93f(x)3x=limx9(f(x)3)(f(x)+3)(x3)(x+3)×(x+3f(x)+3)\mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{\left( {\sqrt {f\left( x \right)} - 3} \right)\left( {\sqrt {f\left( x \right)} + 3} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} \times \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right), we get
limx93f(x)3x=limx9f(x)9x9×(x+3f(x)+3)\Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - 9}}{{x - 9}} \times \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)
It is given that f(9)=9f\left( 9 \right) = 9.
Substituting 9=f(9)9 = f\left( 9 \right) in the equation, we get
limx93f(x)3x=limx9f(x)f(9)x9×(x+3f(x)+3)\Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - f\left( 9 \right)}}{{x - 9}} \times \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)
Rewriting the expression, we get
limx93f(x)3x=limx9f(x)f(9)x9×limx9(x+3f(x)+3)\Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - f\left( 9 \right)}}{{x - 9}} \times \mathop {\lim }\limits_{x \to 9} \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)
The derivative of a function f(x)f\left( x \right) at x=ax = a is given by the formula f(a)=limh0f(a+h)f(a)hf'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {a + h} \right) - f\left( a \right)}}{h}.
This can be written as f(a)=limxaf(x)f(a)xaf'\left( a \right) = \mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right) - f\left( a \right)}}{{x - a}}, where h=xah = x - a.
Therefore, the derivative of the function f(x)f\left( x \right) at x=9x = 9 can be written as f(9)=limx9f(x)f(9)x9f'\left( 9 \right) = \mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - f\left( 9 \right)}}{{x - 9}}.
Substituting limx9f(x)f(9)x9=f(9)\mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - f\left( 9 \right)}}{{x - 9}} = f'\left( 9 \right) in the equation limx93f(x)3x=limx9f(x)f(9)x9×limx9(x+3f(x)+3)\mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - f\left( 9 \right)}}{{x - 9}} \times \mathop {\lim }\limits_{x \to 9} \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right), we get
limx93f(x)3x=f(9)×limx9(x+3f(x)+3)\Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = f'\left( 9 \right) \times \mathop {\lim }\limits_{x \to 9} \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)
Applying the limit x=9x = 9, we get
limx93f(x)3x=f(9)×(9+3f(9)+3)\Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = f'\left( 9 \right) \times \left( {\dfrac{{\sqrt 9 + 3}}{{\sqrt {f\left( 9 \right)} + 3}}} \right)
Substituting f(9)=9f\left( 9 \right) = 9 and f(9)=1f'\left( 9 \right) = 1 in the expression, we get
limx93f(x)3x=1×(9+39+3)\Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = 1 \times \left( {\dfrac{{\sqrt 9 + 3}}{{\sqrt 9 + 3}}} \right)
Simplifying the expression, we get
limx93f(x)3x=1×(1) limx93f(x)3x=1\begin{array}{l} \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = 1 \times \left( 1 \right)\\\ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = 1\end{array}
Therefore, the value of the expression limx93f(x)3x\mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} is 1.
Thus, the correct option is option (b).

Note: We rewrote the expression limx9f(x)f(9)x9×(x+3f(x)+3)\mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - f\left( 9 \right)}}{{x - 9}} \times \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right) as limx9f(x)f(9)x9×limx9(x+3f(x)+3)\mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - f\left( 9 \right)}}{{x - 9}} \times \mathop {\lim }\limits_{x \to 9} \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right). This is because an expression of the form limxaf(x)g(x)\mathop {\lim }\limits_{x \to a} f\left( x \right)g\left( x \right) can be written as limxaf(x)×limxag(x)\mathop {\lim }\limits_{x \to a} f\left( x \right) \times \mathop {\lim }\limits_{x \to a} g\left( x \right). As the solution is lengthy, we might make a mistake in substituting the values correctly and therefore we need to be careful while solving. We will apply the limit at the end and not in the start because it will incur the wrong result. For example, in this question if we put the limit in the start then it will be equal to 0, which is wrong.