Solveeit Logo

Question

Question: If \(f\left( 5 \right) = 7\) and \(f'\left( 5 \right) = 7\) then \(\mathop {\lim }\limits_{x \to 5} ...

If f(5)=7f\left( 5 \right) = 7 and f(5)=7f'\left( 5 \right) = 7 then limx5xf(5)5f(x)x5\mathop {\lim }\limits_{x \to 5} \dfrac{{xf\left( 5 \right) - 5f\left( x \right)}}{{x - 5}} is given by
(a)35 (b)35 (c)28 (d)28  \left( a \right)35 \\\ \left( b \right) - 35 \\\ \left( c \right)28 \\\ \left( d \right) - 28 \\\

Explanation

Solution

Hint: Use L'hopital's rule, which is generally used to find the limits to reduce it to indeterminate form.

First of all we have to check any indeterminate form (00,,,00,1,0,0×)\left( {\dfrac{0}{0},\dfrac{\infty }{\infty },\infty - \infty ,{0^0},{1^\infty },{\infty ^0},0 \times \infty } \right) make or not. If any indeterminate form comes then we apply L'hopital's rule.
Now, put x=5x = 5 in xf(5)5f(x)x5\dfrac{{xf\left( 5 \right) - 5f\left( x \right)}}{{x - 5}}
5f(5)5f(5)55=00\Rightarrow \dfrac{{5f\left( 5 \right) - 5f\left( 5 \right)}}{{5 - 5}} = \dfrac{0}{0} (indeterminate form)
So, we apply L'hopital's rule
In L’hopital’s rule we differentiate both numerator and denominator to reduce indeterminate form.
limx5ddx(xf(5)5f(x))ddx(x5) limx5f(5)5f(x)10   \Rightarrow \mathop {\lim }\limits_{x \to 5} \dfrac{{\dfrac{d}{{dx}}\left( {xf\left( 5 \right) - 5f\left( x \right)} \right)}}{{\dfrac{d}{{dx}}\left( {x - 5} \right)}} \\\ \Rightarrow \mathop {\lim }\limits_{x \to 5} \dfrac{{f\left( 5 \right) - 5f'\left( x \right)}}{{1 - 0}} \\\ \\\
If xx tends to 55 So, there is no indeterminate form.
Now, put x=5x = 5
f(5)5f(5)\Rightarrow f\left( 5 \right) - 5f'\left( 5 \right)
f(5)=7f\left( 5 \right) = 7 and f(5)=7f'\left( 5 \right) = 7 given in question
75×7 735 28  \Rightarrow 7 - 5 \times 7 \\\ \Rightarrow 7 - 35 \\\ \Rightarrow - 28 \\\
So, the correct option is (d)\left( d \right).

Note: whenever we come to these types of problems first of all we have to check any indeterminate form make or not. If any indeterminate form makes So, we can apply L'hopital's rule unless the indeterminate form reduces. If there is no indeterminate form then directly put the value of xx.