Solveeit Logo

Question

Question: If f is the angle between the diameter through any point on a standard ellipse and the normal at the...

If f is the angle between the diameter through any point on a standard ellipse and the normal at the point, then the greatest value of tan f is–

A

2aba2+b2\frac{2ab}{a^{2} + b^{2}}

B

a2+b2ab\frac{a^{2} + b^{2}}{ab}

C

a2b22ab\frac{a^{2} - b^{2}}{2ab}

D

b2a2\frac{b^{2}}{a^{2}}

Answer

a2b22ab\frac{a^{2} - b^{2}}{2ab}

Explanation

Solution

Any point P on ellipse is (a cos q, b sin q)

\ Equation of the diameter CP is y = (batanθ)\left( \frac{b}{a}\tan\theta \right)x

The normal to ellipse at P is

ax sec q – by cosec q = a2e2

Slopes of the lines CP and the normal GP are ba\frac{b}{a}tan q andab\frac{a}{b}tan q

\ tan f = abtanθbatanθ1+abtanθ.batanθ\frac{\frac{a}{b}\tan\theta - \frac{b}{a}\tan\theta}{1 + \frac{a}{b}\tan\theta.\frac{b}{a}\tan\theta}=tanθsec2θ\frac{\tan\theta}{\sec^{2}\theta}

=a2b2ab\frac{a^{2} - b^{2}}{ab}sin q cos q = a2b22ab\frac{a^{2} - b^{2}}{2ab}sin 2q

\ The greatest value of

tan f = a2b22ab\frac{a^{2} - b^{2}}{2ab}.1 = a2b22ab\frac{a^{2} - b^{2}}{2ab} .