Solveeit Logo

Question

Question: If f is a real-valued differentiable function satisfying \(\left| f(x)-f(y) \right|\le {{(x-y)}^{2}}...

If f is a real-valued differentiable function satisfying f(x)f(y)(xy)2,x,yR\left| f(x)-f(y) \right|\le {{(x-y)}^{2}},x,y\in \mathbb{R}
and f(0)=0f(0)=0 , then f(1)f(1) is equal to
(a)2
(b)1
(c)-1
(d)0

Explanation

Solution

Hint: Here, we have to take x=x+hx=x+h and y=xy=x, divide the equation by hh, take limit on both the sides, and then apply the formula of derivative, f(x)=limh0f(x+h)f(x)hf'(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(x+h)-f(x)}{h}. Also apply the property that derivative of a constant is zero.

Complete step-by-step answer:
In the question it is given that,
f(x)f(y)(xy)2,x,yR .... (1)\left| f(x)-f(y) \right|\le {{(x-y)}^{2}},x,y\in \mathbb{R}\text{ }....\text{ (1)}
Now, put x=x+hx=x+h and y=xy=x in equation (1).
Our equation (1) becomes:
f(x+h)f(x)(x+hx)2 f(x+h)f(x)h2 \begin{aligned} & \left| f(x+h)-f(x) \right|\le {{(x+h-x)}^{2}} \\\ & \left| f(x+h)-f(x) \right|\le {{h}^{2}} \\\ \end{aligned}
Now, by dividing h on both the sides we get:
f(x+h)f(x)hh2h f(x+h)f(x)hh  \begin{aligned} & \left| \dfrac{f(x+h)-f(x)}{h} \right|\le \dfrac{{{h}^{2}}}{h} \\\ & \left| \dfrac{f(x+h)-f(x)}{h} \right|\le h\text{ } \\\ \end{aligned}
Next, by applying limit on both the sides we obtain:
limh0f(x+h)f(x)hlimh0h \underset{h\to 0}{\mathop{\lim }}\,\left| \dfrac{f(x+h)-f(x)}{h} \right|\le \underset{h\to 0}{\mathop{\lim }}\,h\text{ }
We know that limh0h=0\underset{h\to 0}{\mathop{\lim }}\,h=0 .
Therefore, our equation becomes,
limh0f(x+h)f(x)h0 .... (2)\underset{h\to 0}{\mathop{\lim }}\,\left| \dfrac{f(x+h)-f(x)}{h} \right|\le 0\text{ }....\text{ (2)}
We know by the definition of derivatives that,
f(x)=limh0f(x+h)f(x)hf'(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(x+h)-f(x)}{h}
Now, by applying modulus on both the sides we get:
f(x)=limh0f(x+h)f(x)h\left| f'(x) \right|=\left| \underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(x+h)-f(x)}{h} \right|
Since, limh0\underset{h\to 0}{\mathop{\lim }}\, is a constant we can take it outside from the modulus, then our equation becomes,
f(x)=limh0f(x+h)f(x)h .... (3)\left| f'(x) \right|=\underset{h\to 0}{\mathop{\lim }}\,\left| \dfrac{f(x+h)-f(x)}{h} \right|\text{ }....\text{ (3)}
Now put equation (2) in equation (3) we get:
f(x)=limh0f(x+h)f(x)h0\left| f'(x) \right|=\underset{h\to 0}{\mathop{\lim }}\,\left| \dfrac{f(x+h)-f(x)}{h} \right|\le 0 i.e.
f(x)0\left| f'(x) \right|\le 0
We know that f(x)\left| f'(x) \right| is positive therefore it can never be negative. So we can say that,
f(x)=0\left| f'(x) \right|=0
If the modulus of a function equals zero then we can say that function also equals zero. Therefore, f(x)=0f'(x)=0.
We also know that if the derivative of a function is zero then the function is a constant. i.e. f(x)f(x) is a constant.
In the question it is given that f(0)=0f(0)=0. Since, f(x)f(x) is a constant we can say that f(1)=0f(1)=0.
Hence, the correct answer is option (d)

Note: Here we have to apply the definition of derivative and also don’t forget that if the derivative of a function is zero then the function is a constant.